已知
a
={3λ,6,λ+6},
b
={λ+1,3,2λ},若
a
b
,則λ=
 
考點(diǎn):平面向量的坐標(biāo)運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量共線定理即可得出.
解答: 解:∵
a
={3λ,6,λ+6},
b
={λ+1,3,2λ},
a
b
,
a
=m
b

3λ=m(λ+1)
6=3m
λ+6=2mλ

解得
λ=2
故答案為:2
點(diǎn)評:本題考查了向量共線定理,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=
2x+3,x>0
0,x=0
ax+b,x<0
,是奇函數(shù),則a+b的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合{2,-1}={2,a2-2a},則實數(shù)a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為
3
,動點(diǎn)P在對角線BD1上,過點(diǎn)P作垂直于BD1的平面α,記這樣得到的截面多邊形(含三角形)的周長為y,設(shè)BP=x,則當(dāng)x∈[
1
2
5
2
]
時,函數(shù)y=f(x)的值域為( 。
A、[
6
,3
6
]
B、[
3
6
2
,3
6
]
C、[
3
6
2
,9]
D、[
6
,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,給出下列5個命題:
(1)若A<B,則sinA<sinB;        (2)sinA<sinB若,則A<B;
(3)若A>B,則cot2A>cot2B;      (4)若A>B,則cos2A<cos2B;
(5)若A<B,則tan
A
2
<tan
B
2
;
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是R上的奇函數(shù),且在R上是增函數(shù).若對于任意x∈R都有f(cos2x+2msinx-
5
2
)<0
恒成立.求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓心為C的圓,滿足下列條件:圓心C位于x軸正半軸上,與直線3x-4y+7=0相切,且被y軸截得的弦長為2
3
,圓C的面積小于13.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若圓C上有兩點(diǎn)M、N關(guān)于直線x+2y-1=0對稱,且|MN|=2
3
,求直線MN的方程;
(3)設(shè)過點(diǎn)P(0,3)的直線l與圓C交于不同的兩點(diǎn)A,B,以O(shè)A,OB為鄰邊作平行四邊形OADB.是否存在這樣的直線l,使得直線OD與PC恰好平行?如果存在,求出l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從正方體ABCD-A1B1C1D1的6個表面中選取3個面,其中有2個面不相鄰的選法共有( 。
A、8種B、12種
C、16種D、20種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x(x≤1)
-x(x>1)
若f(x)=2,則x的值為(  )
A、log32
B、log23
C、32
D、2

查看答案和解析>>

同步練習(xí)冊答案