分析 (Ⅰ)由題意可知:將點代入橢圓方程,利用橢圓的離心率公式即可求得a和b的值,即可求得橢圓方程;
(Ⅱ)將直線方程代入橢圓方程,由△=0,求得4k2-m2+3=0,利用韋達定理及中點坐標公式,求得T點坐標,聯(lián)立即可求得S點坐標,由$\overrightarrow{AS}$•$\overrightarrow{AT}$=0,根據(jù)向量數(shù)量積的坐標運算,可得$\left\{\begin{array}{l}{4{x}_{1}-4=0}\\{{x}_{1}^{2}-4{x}_{1}+3=0}\end{array}\right.$,即可求得A點坐標,即可求得以ST為直徑的圓恒過該定點(1,0).
解答 解:(Ⅰ)由點(1,$\frac{3}{2}$)在橢圓上得,代入橢圓方程:$\frac{1}{{a}^{2}}+\frac{9}{4^{2}}=1$,①----------(1分)
橢圓的離心率e=$\frac{c}{a}$=$\frac{1}{2}$,則a=2c,a2=4c2,b2=3c2,②----------(2分)
②代入①解得c2=1,a2=4,b2=3,
故橢圓C的標準方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;-----------(4分)
(Ⅱ)由$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,消去y,整理得(4k2+3)x2+8kmx+4m2-12=0;
因為動直線l與橢圓C相切,即它們有且只有一個公共點T,可設(shè)T(x0,y0),
m≠0,△=0,∴(8km)2-4×(4k2+3)×(4m2-12)=0,
∴4k2-m2+3=0,③----(6分)
此時,x0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{4km}{4{k}^{2}+3}$=-$\frac{4k}{m}$,y0=kx0+m=$\frac{3}{m}$,則T(-$\frac{4k}{m}$,$\frac{3}{m}$).----------(7分)
由$\left\{\begin{array}{l}{x=4}\\{y=kx+m}\end{array}\right.$,得S(4,4k+m).-------------------------------------------------------(8分)
假設(shè)平面內(nèi)存在定點滿足條件,不妨設(shè)為點A.
由圖形對稱性知,點A必在x軸上.-------------------------------------------------(9分)
設(shè)A(x1,0),則由已知條件知AS⊥AT,
即$\overrightarrow{AS}$•$\overrightarrow{AT}$=0對滿足③式的m,k恒成立.-----------------------------------------(10分)
由$\overrightarrow{AS}$=(4-x1,4k+m),$\overrightarrow{AT}$=(-$\frac{4k}{m}$-x1,$\frac{3}{m}$),由$\overrightarrow{AS}$•$\overrightarrow{AT}$=0得:-$\frac{16k}{m}$+$\frac{4k{x}_{1}}{m}$-4x1+x12+$\frac{12k}{m}$+3=0,
整理得(4x1-4)$\frac{k}{m}$+x12-4x1+3=0,④-----------------------(12分)
由②式對滿足①式的m,k恒成立,則$\left\{\begin{array}{l}{4{x}_{1}-4=0}\\{{x}_{1}^{2}-4{x}_{1}+3=0}\end{array}\right.$,解得x1=1.
故平面內(nèi)存在定點(1,0),使得以ST為直徑的圓恒過該定點.-----------------(14分)
點評 本題考查橢圓的標準方程,直線與橢圓的位置關(guān)系,考查韋達定理,中點坐標公式,向量數(shù)量積的坐標運算,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于直線$α=\frac{π}{4}$成軸對稱,關(guān)于坐標原點成中心對稱 | |
B. | 關(guān)于直線$α=\frac{3π}{4}$成軸對稱,沒有對稱中心 | |
C. | 沒有對稱軸,關(guān)于點(π,0)成中心對稱 | |
D. | 既沒有對稱軸,也沒有對稱中心. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=[$\frac{x}{10}$] | B. | y=[$\frac{x+2}{10}$] | C. | y=[$\frac{x+3}{10}$] | D. | y=[$\frac{x+4}{10}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com