4.已知菱形ABCD的對(duì)角線AC=2,則$\overline{AB}•\overline{AC}$=( 。
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 畫出菱形ABCD,由對(duì)角線互相垂直,結(jié)合數(shù)量積的幾何意義,計(jì)算即可得到所求值.

解答 解:如圖菱形ABCD,連接AC,BD交于O點(diǎn),
則AC⊥BD,
∴$\overline{AB}•\overline{AC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{AC}$|cos∠BAC=|$\overrightarrow{AO}$|•|$\overrightarrow{AC}$|=1×2=2,
故選:C

點(diǎn)評(píng) 本題考查向量的數(shù)量積的求法,注意運(yùn)用定義和投影的意義,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中,正確的是( 。
A.若a>b,c>d,則ac>bdB.若ac>bc,則a>b
C.若a>b,則$\frac{1}{a}<\frac{1}$D.若a>b,c<d,則a-c>b-d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)命題p:?x∈R,x2-2(m-3)x+1=0,命題q:?x∈R,x2-2(m+5)x+3m+19≠0
(1)若p∨q為真命題,且p∧q為假命題,求實(shí)數(shù)m的取值范圍
(2)若p∧q為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{ax+b}{x+1}$在(-1,+∞)是增函數(shù).
(1)當(dāng)b=1時(shí),求a的取值范圍.
(2)若g(x)=f(x)-1008沒有零點(diǎn),f(1)=0,求f(-3)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知i為虛數(shù)單位,則?$\frac{-2i}{1+i}$?=(  )
A.1+iB.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)是周期為2的奇函數(shù),當(dāng)-1≤x≤0時(shí),f(x)=x2+x,則$f(\frac{2017}{2})$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)復(fù)數(shù)z滿足(z+i)i=-3+4i(i為虛數(shù)單位),則z的模為$2\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.方程2x=x2有3個(gè)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,在多面體EF-ABC中,△ABC是邊長為2的等邊三角形,O為BC的中點(diǎn),EF∥AO,EA=EC=EF=$\sqrt{3}$.
(1)若平面ABC∩平面BEF=l,證明:EF∥l;
(2)求證:AC⊥BE;
(3)若BE=$\sqrt{5}$,EO=$\sqrt{3}$,求點(diǎn)B到平面AFO的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案