20.我國古代數(shù)學(xué)名著《九章算術(shù)》中有:“今有羨除,下廣六尺,上廣一丈,深三尺,末廣八尺,無深,袤七尺,問積幾何?”羨除即三個面是等腰梯形、兩側(cè)面是三角形的五面梯形ABCDEF隧道(如圖),其中,等腰梯形ABCD的下、上底邊長分別為6尺和1丈,高為3尺,平面ABCD⊥平面ABFE,等腰梯形ABFE的上底邊長為8尺,高為7尺,則得到此“羨除”的容積( 。
A.約84立方尺B.約為105立方尺C.恰為84立方尺D.恰為105立方尺

分析 五面體EF-ABCD中,四邊形ADEF,ABCD,EFBC均為等腰梯形,EF∥AD∥BC,△ABF,△CDE均為直角三角形,連接BE,BD,AE,得到三個三棱錐,設(shè)三棱錐BAEF的體積為V1,三棱錐BAED的體積為V2,三棱錐BDEC的體積為V3,由此能求出五面體的體積.

解答 解:本題是求規(guī)則形狀的五面體的體積,
如圖,五面體EF-ABCD中,四邊形ADEF,ABCD,EFBC均為等腰梯形,
EF∥AD∥BC,△ABF,△CDE均為直角三角形,
AB⊥AF,CD⊥DE,設(shè)下廣EF=a,上廣AD=b,末廣BC=c,
高EF到平面ABCD的距離為h,AD與BC的距離為l,
連接BE,BD,AE,如圖2,
得到三個三棱錐,設(shè)三棱錐BAEF的體積為V1,三棱錐BAED的體積為V2,三棱錐BDEC的體積為V3,
則${V}_{3}=\frac{1}{6}clh$,${V}_{2}=\frac{1}{6}blh$,$\frac{{V}_{1}}{{V}_{2}}$=$\frac{a}$,${V}_{1}=\frac{a}{V}_{2}$,
∴${V}_{1}=\frac{a}{{V}_{2}}^{\;}$=$\frac{1}{6}alh$,
∴五面體的體積:
V=V1+V2+V3=$\frac{1}{6}$(a+b+c)×h×l=$\frac{1}{6}$(6+10+8)×3×7=84(立方尺).
故選:C.

點評 本題考查幾何體的體積及直線與直線、直線與平面、平面與平面的位置關(guān)系等基礎(chǔ)知識,考查考查推理論證能力、運算求解能力、空間想象能力,考查化歸轉(zhuǎn)化思想,數(shù)形結(jié)合思想,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.“微信運動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機(jī)選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:
步數(shù)
性別
0~20002001~50005001~80008001~10000>10000
12368
021062
(1)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的2×2列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認(rèn)為“評定類型”與“性別”有關(guān)?
積極型懈怠型總計
14822
61218
總計202040
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635
(2)若小王以這40位好友該日走路步數(shù)的頻率分布來估計其所有微信好友每日走路步數(shù)的概率分布,現(xiàn)從小王的所有微信好友中任選2人,其中每日走路不超過5000步的有X人,超過10000步的有Y人,設(shè)ξ=|X-Y|,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某沿海四個城市A、B、C、D的位置如圖所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30$\sqrt{3}$nmile,CD=250$\sqrt{6}$nmile,D位于A的北偏東75°方向.現(xiàn)在有一艘輪船從A出發(fā)以50nmile/h的速度向D直線航行,60min后,輪船由于天氣原因收到指令改向城市C直線航行,收到指令時城市C對于輪船的方位角是南偏西θ度,則sinθ=$\frac{{\sqrt{6}-\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overrightarrow{a}$為單位向量,$\overrightarrow$=(0,2),且$\overrightarrow{a}$$•\overrightarrow$=1,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x2lnax(a>0).
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=e時,證明:t>0時,存在唯一的s,使ts2+t2=f(s).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.邊長為2的正方形ABCD所在的平面與△CDE所在的平面交于CD,且AE⊥平面CDE,M為AD上的點,AE=1,AM=$\frac{1}{2}$.
(Ⅰ)求證:EM⊥BD;
(Ⅱ)設(shè)點F是棱BC上一點,若二面角A-DE-F的余弦值為$\frac{\sqrt{10}}{10}$,試確定點F在BC上的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某單位共有10名員工,他們某年的收入如表:
員工編號12345678910
年薪(萬元)44.5656.57.588.5951
(1)求該單位員工當(dāng)年年薪的平均值和中位數(shù);
(2)從該單位中任取2人,此2人中年薪收入高于7萬的人數(shù)記為ξ,求ξ的分布列和期望;
(3)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬元,5.5萬元,6萬元,8.5萬元,預(yù)測該員工第五年的年薪為多少?
附:線性回歸方程$\widehaty=\widehatbx+\widehata$中系數(shù)計算公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{7}{5}=1.4$,$\widehata=\overline y-\widehatb\overline x$,其中$\overline x,\overline y$為樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=x2+bx+c在x=-1處取得極值-1,那么f(x)=( 。
A.x2-2x-4B.x2+x-1C.x2+2xD.x2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若$\frac{π}{2}$<α<π,sinα=$\frac{3}{5}$,則tan$\frac{α}{2}$=3.

查看答案和解析>>

同步練習(xí)冊答案