已知橢圓,過點(diǎn)且被點(diǎn)平分的橢圓的弦所在的直線方程是(   )
A.B.C.D.
B

試題分析:設(shè)過點(diǎn)且被點(diǎn)平分的橢圓的弦為,設(shè),所以有又因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824000952874423.png" style="vertical-align:middle;" />兩點(diǎn)均在橢圓上,所以兩式作差得,即弦所在的直線的斜率為,由直線方程的點(diǎn)斜式可得直線方程為,整理得.
點(diǎn)評(píng):只要涉及到弦以及弦的中點(diǎn)問題,首先應(yīng)該想到用“點(diǎn)差法”.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知橢圓中心在原點(diǎn),一個(gè)焦點(diǎn)為,且長軸長與短軸長的比是
(1)求橢圓的方程;(5分)
(2)是否存在斜率為的直線,使直線與橢圓有公共點(diǎn),且原點(diǎn)與直線的距離等于4;若存在,求出直線的方程,若不存在,說明理由。(7分)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分9分)已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在軸上的拋物線過點(diǎn)
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)作直線交拋物線于兩點(diǎn),使得恰好平分線段,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和為4,設(shè)點(diǎn)的軌跡為,直線交于兩點(diǎn)。
(Ⅰ)寫出的方程;     (Ⅱ)若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y2=2px(p>0)上有一點(diǎn)M,它的橫坐標(biāo)是3,它到焦點(diǎn)的距離是5,則拋物線方程為(  A  )
A.y2=8xB.y2=4xC.y2=3xD.y2=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)P是曲線上任意一點(diǎn),則點(diǎn)P到直線的最小距離是(    )
A.   B.   C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓上一點(diǎn)P到兩焦點(diǎn)的距離之積為m,則m取最大值時(shí)P點(diǎn)坐標(biāo)是(     )
A.(0,3)或(0,-3)B.
C.(5,0)或(-5,0) D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的虛軸長為4,離心率,、分別是它的左、右焦點(diǎn),若過的直線與雙曲線的左支交于A、B兩點(diǎn),且的等差中項(xiàng),則等于 (  )
A.8
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

短軸長為,離心率為的橢圓的兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2,過F1作直線交橢圓于A,B兩點(diǎn),則△ABF2的周長為
A.24B.12 C.6D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案