已知a,b∈R,函數(shù)f(x)=ax2+
b
x
(x∈R,x≠0)在x=1時有極小值
3
2

(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.
考點:利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)求出f′(x),由在x=1時有極小值
3
2
.所以代入y和y′=0中得到關(guān)于a、b的方程組,求出a、b即可;
(2)分別由由f′(x)>0,f′(x)<0求出單調(diào)遞增,單調(diào)遞減區(qū)間.
解答: 解:(1)f′(x)=2ax-
b
x2
,由已知,f′(1)=0,f(1)=
3
2
,解得a=
1
2
,b=1.
(2)由(1)得f(x)=
1
2
x2+
1
x
,f′(x)=x-
1
x2
,由f′(x)>0,得x>1,由f′(x)<0,得x<0或0<x<1.
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為[1,+∞),單調(diào)遞減區(qū)間為(-∞,0),(0,1].
點評:本題考查的知識點是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查學(xué)生利用導(dǎo)數(shù)研究函數(shù)單調(diào)性的能力,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=x-a(x+1)ln(x+1).
(Ⅰ)求f(x)的極值點;
(Ⅱ)當(dāng)a=1時,若方程f(x)=t在[-
1
2
,1]上有兩個實數(shù)解,求實數(shù)t的取值范圍;
(Ⅲ)證明:當(dāng)m>n>0時,(1+m)n<(1+n)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+3x在點A,B處分別取得極大值和極小值.
(1)求A,B兩點的坐標(biāo);
(2)過原點O的直線l若與f(x)的圖象交于A,B兩點,求|OA||OB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+ax2+bx+c圖象上的點P(1,f(1))處的切線方程為y=-3x+1
(1)若函數(shù)f(x)在x=-2時有極值,求f(x)的表達式;
(2)函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞減,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

k為何值時,直線l1:y=kx+3k-2與直線l2:x+4y-4=0的交點在第一象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
1
2
x2-lnx.
①求函數(shù)f(x)的值域;
②討論方程
1
2
x2-lnx=m的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(1,
3
),
b
=(cos2x,sin2x),設(shè)函數(shù)f(x)=
a
b
,求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)f(x)=
e x-e -x
2
 
,g(x)=
ex+e-x
2
,證明:f(2x)=2f(x)•g(x);
(2)若xlog34=1,求4x+4-x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人各進行3次射擊,甲每次擊中目標(biāo)的概率為
1
2
,乙每次擊中目標(biāo)的概率為
2
3

(1)求乙至多擊中目標(biāo)2次的概率;
(2)記甲擊中目標(biāo)的次數(shù)為Z,求Z的分布列、數(shù)學(xué)期望和標(biāo)準(zhǔn)差.

查看答案和解析>>

同步練習(xí)冊答案