13.已知如圖中的所有圓的半徑都等于3,且該圖形為某一空間幾何體的三視圖,則這個空間幾何體的表面積為36π.

分析 由三視圖得該幾何體是一個半徑為3的球去掉$\frac{1}{4}$球體后剩余部分的幾何體,由此能求出這個空間幾何體的表面積.

解答 解:由三視圖得該幾何體是一個半徑為3的球去掉$\frac{1}{4}$球體后剩余部分的幾何體,
∴這個空間幾何體的表面積為:
S=$\frac{3}{4}×4π×{3}^{2}$+4×($\frac{1}{4}$×π×32)=36π.
故答案為:36π.

點評 本題考查考查空間幾何體的表面積的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、空間想象能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=$\sqrt{x+3}+{log_2}({9-x})$的定義域是(  )
A.{x|x>9}B.{x|-3<x<9}C.{x|x>-3}D.{x|-3≤x<9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)an=-3n2+15n-18,則數(shù)列{an}中的最大項的值是(  )
A.$\frac{16}{3}$B.$\frac{13}{3}$C.4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{a}$$•\overrightarrow$=$\frac{1}{2}$,若$\overrightarrow{a}$$-\overrightarrow{c}$和$\overrightarrow$-$\overrightarrow{a}$夾角為120°,則|$\overrightarrow{c}$|的最大值為( 。
A.$\sqrt{3}$B.2C.$\frac{2}{3}$$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,A,B,C是一個無蓋的正方體盒子展開后的平面圖上的散點,則在正方體盒子中∠ABC=( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖是正方體的平面展開圖.關(guān)于這個正方體,有以下判斷:
①ED與NF所成的角為60°
②CN∥平面AFB
③BM∥DE
④平面BDE∥平面NCF
其中正確判斷的序號是( 。
A.①③B.②③C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)的導(dǎo)函數(shù)f′(x),滿足關(guān)系式f(x)=x2+2xf′(2)-lnx,則f(1)的值為( 。
A.-2B.-4C.-6D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知點P(1+cosα,sinα),參數(shù)α∈[0,2π),在以O(shè)極點,x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,點Q在曲線C:ρ=$\frac{9}{\sqrt{2}sin(θ+\frac{π}{4})}$上.
(1)求點P的軌跡方程與曲線C的直角坐標(biāo)方程;
(2)求點P與點Q之間距離的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.觀察圓周上n個點之間所連的弦,發(fā)現(xiàn)兩個點可以連一條弦,3個點可以連3條弦,4個點可以連6條弦,5個點可以連10條弦,6個點可以連15條弦,請你探究其中規(guī)律,如果圓周上有10個點.則可以連45條弦.

查看答案和解析>>

同步練習(xí)冊答案