【題目】候鳥每年都要隨季節(jié)的變化而進行大規(guī)模地遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關(guān)系為:v=a+blog3 (其中a,b是實數(shù)).據(jù)統(tǒng)計,該種鳥類在靜止的時候其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1 m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個單位?
【答案】
(1)解:由題意可知,當(dāng)這種鳥類靜止時,它的速度為0 m/s,此時耗氧量為30個單位,故有a+blog3 =0,
即a+b=0;①
當(dāng)耗氧量為90個單位時,速度為1 m/s,
故a+blog3 =1,整理得a+2b=1.②
解方程組 得
(2)解:由(1)知,v=a+blog3 =-1+log3 .所以要使飛行速度不低于2 m/s,則有v≥2,所以-1+log3 ≥2,即log3 ≥3,解得 ≥27,即Q≥270.
所以若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要270個單位
【解析】(1)利用該種鳥類在靜止的時間其耗氧量為30個單位,而其耗氧量為90個單位時,其飛行速度為1m/s,建立方程組,即可求出a,b的值;
(2)利用飛行的速度不能低于2m/s,建立不等式,即可求出其耗氧量至少要多少個單位.解函數(shù)關(guān)系未知的應(yīng)用題
①閱讀理解題意
看一看可以用什么樣的函數(shù)模型,初步擬定函數(shù)類型;
②抽象函數(shù)模型
在理解問題的基礎(chǔ)上,把實際問題抽象為函數(shù)模型;
③研究函數(shù)模型的性質(zhì)
根據(jù)函數(shù)模型,結(jié)合題目的要求,討論函數(shù)模型的有關(guān)性質(zhì),獲得函數(shù)模型的解;
④得出問題的結(jié)論
根據(jù)函數(shù)模型的解,結(jié)合實際問題的實際意義和題目的要求,給出實際問題的解.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體ABCDEF中,四邊形ABCD為正方形,底面ABFE為直角梯形,∠ABF為直角, ,平面ABCD⊥平面ABFE.
(1)求證:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①x∈R,不等式x2+2x>4x-3均成立;
②若log2x+logx2≥2,則x>1;
③“若a>b>0且c<0,則 ”的逆否命題;
④若p且q為假命題,則p,q均為假命題.
其中真命題是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x),且 ,則函數(shù)g(x)=lg x的圖象與函數(shù)f(x)的圖象的交點個數(shù)為( )
A.3
B.5
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是偶函數(shù),當(dāng)x>0時,f(x)單調(diào)遞減,設(shè)a=-21.2 , ,c=2log52,則f(a),f(b),f(c)的大小關(guān)系為( )
A.f(c)<f(b)<f(a)
B.f(c)<f(a)<f(b)
C.f(c)>f(b)>f(a)
D.f(c)>f(a)>f(b)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非零平面向量 , ,則“| |=| |+| |”是“存在非零實數(shù)λ,使 =λ ”的( )
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在吸煙與患肺癌這兩個分類變量的獨立性檢驗的計算中,下列說法正確的是( )
A.若 的觀測值為 ,在犯錯誤的概率不超過 的前提下認為吸煙與患肺癌有關(guān)系,那么在100個吸煙的人中必有99人患有肺癌.
B.由獨立性檢驗可知,在犯錯誤的概率不超過 的前提下認為吸煙與患肺癌有關(guān)系時,我們說某人吸煙,那么他有 的可能患有肺癌.
C.若從統(tǒng)計量中求出在犯錯誤的概率不超過 的前提下認為吸煙與患肺癌有關(guān)系,是指有 的可能性使得判斷出現(xiàn)錯誤.
D.以上三種說法都不正確.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中 中,曲線 的參數(shù)方程為 為參數(shù), ). 以坐標原點為極點,
軸正半軸為極軸建立極坐標系,已知直線 的極坐標方程為 .
(1)設(shè) 是曲線 上的一個動點,當(dāng) 時,求點 到直線 的距離的最大值;
(2)若曲線 上所有的點均在直線 的右下方,求 的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com