【題目】已知函數(shù) .
(1)討論 的單調(diào)性;
(2)若 有兩個(gè)零點(diǎn),求a的取值范圍.

【答案】
(1)解:
時(shí), ,所以 上為減函數(shù)
時(shí), ,則
則: 上為減函數(shù), 上為增函數(shù)
(2)解: 即可,
,令 上為減函數(shù)
又因?yàn)椋? ,所以 ,所以 , 所以:a的取值范圍為 .
【解析】(1)通過求導(dǎo),對(duì)參數(shù)a進(jìn)行討論研究函數(shù)的單調(diào)性;
(2)由(1)得知函數(shù)有極小值時(shí)才可能出現(xiàn)兩個(gè)零點(diǎn),且極小值必小于0,結(jié)合函數(shù)單調(diào)性求得a的范圍.
【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在空間直角坐標(biāo)系O﹣xyz中,已知A(2,0,0),B(0,2,0),C(0,0,0),P(0,1, ),則三棱錐P﹣ABC在坐標(biāo)平面xOz上的正投影圖形的面積為;該三棱錐的最長(zhǎng)棱的棱長(zhǎng)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,若 ,且 對(duì)任意的 恒成立,則 的最大值為( )
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題中,真命題有 . (寫出所有真命題的序號(hào))
①若a,b,c∈R,則“ac2>bc2”是“a>b”成立的充分不必要條件;②命題“x0∈R, +x0+1<0”的否定是“x∈R,x2+x+1≥0”;③命題“若|x|≥2,則x≥2或x≤-2”的否命題是“若|x|<2,則-2<x<2”;④函數(shù)f(x)=ln x+x- 在區(qū)間(1,2)上有且僅有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 經(jīng)過 為坐標(biāo)原點(diǎn),線段 的中點(diǎn)在圓 上.
(1)求 的方程;
(2)直線 不過曲線 的右焦點(diǎn) ,與 交于 兩點(diǎn),且 與圓 相切,切點(diǎn)在第一象限, 的周長(zhǎng)是否為定值?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且當(dāng)x∈[0,1]時(shí),f(x)=x,則函數(shù)y=f(x)-log3|x|的零點(diǎn)個(gè)數(shù)是( )
A.多于4個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】候鳥每年都要隨季節(jié)的變化而進(jìn)行大規(guī)模地遷徙,研究某種鳥類的專家發(fā)現(xiàn),該種鳥類的飛行速度v(單位:m/s)與其耗氧量Q之間的關(guān)系為:v=a+blog3 (其中a,b是實(shí)數(shù)).據(jù)統(tǒng)計(jì),該種鳥類在靜止的時(shí)候其耗氧量為30個(gè)單位,而其耗氧量為90個(gè)單位時(shí),其飛行速度為1 m/s.
(1)求出a,b的值;
(2)若這種鳥類為趕路程,飛行的速度不能低于2 m/s,則其耗氧量至少要多少個(gè)單位?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)甲、乙兩人每次射擊命中目標(biāo)的概率分別為 ,且各次射擊相互獨(dú)立,若按甲、乙、甲、乙…的次序輪流射擊,直到有一人擊中目標(biāo)就停止射擊,則停止射擊時(shí),甲射擊了兩次的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(1)證明:MN∥平面PAB;
(2)求直線AN與平面PMN所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案