已知函數(shù)f(x)=a|x+b|(a>0,a≠1,b∈R).
(1)若f(x)為偶函數(shù),求b的值;
(2)若f(x)在區(qū)間[2,+∞)上是增函數(shù),試求a、b應滿足的條件.
考點:函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應用
分析:(1)因為f(x)為偶函數(shù),得到對任意的∈R,都有f(-x)=f(x),求出b;
(2)記h(x)=|x+b|=
x+b,x≥-b
-x-b,x<-b
,討論a值得到b的范圍.
解答: 解:(1)因為f(x)為偶函數(shù),∴對任意的∈R,都有f(-x)=f(x),
即a|x+b|=a|-x+b|,所以|x+b|=|-x+b|
得 b=0.

(2)記h(x)=|x+b|=
x+b,x≥-b
-x-b,x<-b

①當a>1時,f(x)在區(qū)間[2,+∞)上是增函數(shù),即h(x)在區(qū)間[2,+∞)上是增函數(shù),
∴-b≤2,b≥-2
②當0<a<1時,f(x)在區(qū)間[2,+∞)上是增函數(shù),即h(x)在區(qū)間[2,+∞)上是減函數(shù)但h(x)在區(qū)間[-b,+∞)上是增函數(shù),故不可能
∴f(x)在區(qū)間[2,+∞)上是增函數(shù)時,a、b應滿足的條件為a>1且b≥-2
點評:本題考查了函數(shù)奇偶性的運用以及討論思想的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設如圖是某幾何體的三視圖,則該幾何體的體積為(  )
A、
3
B、8-
π
3
C、8-2π
D、8-
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了得到函數(shù)y=cos(2x+
π
6
)的圖象,只需把函數(shù)y=sin(2x+
π
6
)的函數(shù)( 。
A、向左平移
π
4
個單位長度
B、向右平移
π
4
個單位長度
C、向左平移
π
2
個單位長度
D、向右平移
π
2
個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)為一元二次函數(shù),f(x)<0的解集為{x|x<-1或x>2},則f(2x)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設平面向量
a
=(-1,0),
b
=(0,2),則2
a
+3
b
等于(  )
A、(6,3)
B、(-2,6)
C、(2,1)
D、(7,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的主視圖、左視圖和俯視圖如圖,請問這是一個什么樣的幾何體?試畫出此圖的表面展開圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下面四個選項大小關系正確的是(  )
A、sin
π
5
<sin
5
B、sin
π
5
>sin
5
C、cos
π
5
>cos
5
D、cos
π
5
<cos
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△abc 中,∠a:∠b:∠c=1:2:3,那么三邊之比 a:b:c 等于( 。
A、1:2:3
B、3:2:1
C、1:
3
:2
D、2:
3
:1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合M={y|y=-x2+5,x∈R},N={y|y=
x+2
,x≥-2},則M∩N=
 

查看答案和解析>>

同步練習冊答案