已知向量,設(shè)函數(shù)的圖象關(guān)于直線=π對稱,其中為常數(shù),且
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)若的圖象經(jīng)過點(diǎn),求函數(shù)在區(qū)間上的取值范圍.

(1);(2)。

解析試題分析:
(4分)
(Ⅰ)∵函數(shù)的圖像關(guān)于直線=π對稱,
!。
又∵,∴
的最小正周期為 (3分)
(II)若的圖像經(jīng)過點(diǎn),則有,∴。
。
,∴。∴。
∴函數(shù)在區(qū)間上的取值范圍為 (3分)
考點(diǎn):平面向量的數(shù)量積;三角函數(shù)的性質(zhì);二倍角公式;化一公式。
點(diǎn)評:本題以向量的方式來給出題設(shè)條件,來考查三角有關(guān)的知識,較為綜合。同時(shí)本題對答題者公式掌握的熟練程度要求較高,是一道基礎(chǔ)題.我們在做題時(shí),一定要仔細(xì)、認(rèn)真,避免出現(xiàn)計(jì)算錯(cuò)誤。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)其中
(1)、若的單調(diào)增區(qū)間是(0.1),求m的值
(2)、當(dāng)時(shí),函數(shù)的圖像上任意一點(diǎn)的切線斜率恒大于3m,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)是否存在實(shí)數(shù),使得函數(shù)的定義域、值域都是,若存在,則求出的值,若不存在,請說明理由.
(2)若存在實(shí)數(shù),使得函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/23/9/epuwj1.png" style="vertical-align:middle;" />時(shí),值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/da/1/r0vir1.png" style="vertical-align:middle;" /> (),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若曲線處的切線互相平行,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) ,的導(dǎo)數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間和極值;
(2)設(shè),是否存在實(shí)數(shù),對于任意的,存在,使得成立?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
若函數(shù)為奇函數(shù),當(dāng)時(shí),(如圖).

(Ⅰ)求函數(shù)的表達(dá)式,并補(bǔ)齊函數(shù)的圖象;
(Ⅱ)用定義證明:函數(shù)在區(qū)間上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)是奇函數(shù),是偶函數(shù),并且,求表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分12分)
已知函數(shù),設(shè)其定義域域是.
(1)求;
(2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知函數(shù)
(1)
(2)

查看答案和解析>>

同步練習(xí)冊答案