(滿分12分)
已知函數(shù),設(shè)其定義域域是.
(1)求;
(2)求函數(shù)的值域.

(1) (2)

解析試題分析:(1)由定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/06/e/1tvlf2.png" style="vertical-align:middle;" />    ……………………4分
(2) 
 ∵,,  ……………………8分
      
      
∴函數(shù)的值域                   ……………………12分
考點(diǎn):函數(shù)求定義域求值域
點(diǎn)評(píng):定義域:使函數(shù)有意義的x的取值范圍;值域:函數(shù)值構(gòu)成的集合,二次函數(shù)求值域結(jié)合其圖像分析考慮

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)它是奇函數(shù)還是偶函數(shù)?并給出證明.
(2)它的圖象具有怎樣的對(duì)稱(chēng)性?
(3)它在上是增函數(shù)還是減函數(shù)?并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知向量,設(shè)函數(shù)的圖象關(guān)于直線=π對(duì)稱(chēng),其中為常數(shù),且
(Ⅰ)求函數(shù)的最小正周期;
(Ⅱ)若的圖象經(jīng)過(guò)點(diǎn),求函數(shù)在區(qū)間上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
已知函數(shù)f (x)=-ax3x2+(a-1)x (x>0),(aÎR).
(Ⅰ)當(dāng)0<a時(shí),討論f (x)的單調(diào)性;
(Ⅱ)若f (x)在區(qū)間(a, a+1)上不具有單調(diào)性,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)是定義在R上的奇函數(shù),且對(duì)任意,當(dāng)時(shí),都有.
(1)求證:R上為增函數(shù).
(2)若對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)定義域?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/67/8/1dyvw4.png" style="vertical-align:middle;" />,且.
設(shè)點(diǎn)是函數(shù)圖像上的任意一點(diǎn),過(guò)點(diǎn)分別作直線軸的垂線,垂足分別為

(1)寫(xiě)出的單調(diào)遞減區(qū)間(不必證明);(4分)
(2)問(wèn):是否為定值?若是,則求出該定值,若不是,則說(shuō)明理由;(7分)
(3)設(shè)為坐標(biāo)原點(diǎn),求四邊形面積的最小值.(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),且處取得極值.
(1)求的值;
(2)若當(dāng)時(shí),恒成立,求的取值范圍;
(3)對(duì)任意的是否恒成立?如果成立,給出證明,如果不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)已知函數(shù),
(Ⅰ)設(shè)(其中的導(dǎo)函數(shù)),求的最大值;
(Ⅱ)求證: 當(dāng)時(shí),有
(Ⅲ)設(shè),當(dāng)時(shí),不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題12分)

(1)求時(shí)函數(shù)的解析式
(2)用定義證明函數(shù)在上是單調(diào)遞增
(3)寫(xiě)出函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

同步練習(xí)冊(cè)答案