19.若直線(a-1)x-2y+1=0與直線x-ay+1=0平行,則a=-1.

分析 把直線方程分別化為斜截式,利用兩條平行線與斜率、截距之間的關(guān)系即可得出.

解答 解:a≠0,直線(a-1)x-2y+1=0與直線x-ay+1=0分別化為:y=$\frac{a-1}{2}$x+$\frac{1}{2}$,y=$\frac{1}{a}$x+$\frac{1}{a}$,
∴$\frac{a-1}{2}$=$\frac{1}{a}$,$\frac{1}{2}≠$$\frac{1}{a}$,解得a=-1.
故答案為:-1.

點評 本題考查了斜截式、兩條平行線與斜率截距之間的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知矩形ABCD,AB=2,BC=1,E是CD的中點,則有$\overrightarrow{AE}$•$\overrightarrow{BD}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.如圖為y=Acos(ωx+φ)(A>0,ω>0,|φ|<π)的圖象的一段,其解析式y(tǒng)=$\sqrt{3}$$cos(2x+\frac{5π}{6})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,在極坐標(biāo)中,已知圓C經(jīng)過點$P(\sqrt{2},\frac{π}{4})$,圓心為直線$l:ρsin(θ-\frac{π}{3})=-\frac{{\sqrt{3}}}{2}$與極軸的交點.求:
(1)直線l的普通方程;
(2)圓C的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)y=x3-3x+c的圖象與x軸恰有兩個公共點,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知實數(shù)x,y滿足$\left\{{\begin{array}{l}{x-2y+1≥0}\\{|x|-y-1≤0}\end{array}}\right.$,則z=$\frac{2x+y+2}{x}$的取值范圍是(-∞,0]∪[$\frac{10}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,若對任意t∈R,恒有|$\overrightarrow{BA}$-t$\overrightarrow{BC}$|≥|$\overrightarrow{AC}$|,則∠C=90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知離心率為$\frac{{\sqrt{2}}}{2}$的橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點F是圓(x-1)2+y2=1的圓心,過橢圓上的動點P作圓兩條切線分別交y軸于M,N(與P點不重合)兩點.
(1)求橢圓方程;
(2)求線段MN長的最大值,并求此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.為了提高全民的身體素質(zhì),某地區(qū)增加了許多的戶外運動設(shè)施為本地戶外運動提供服務(wù),為了進一步了解人們對戶外運動的喜愛與否,隨機對50人進行了問卷調(diào)查,已知在這50人中隨機抽取1人抽到喜歡戶外運動的概率為$\frac{3}{5}$,根據(jù)調(diào)查結(jié)果得到了如下列聯(lián)表:
喜歡戶外運動不喜歡戶外運動合計
男性5
女性10
合計50
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.5%的把握認(rèn)為“喜歡戶外運動與性別有關(guān)”?并說明你的理由;
(3)根據(jù)分層抽樣的方法從喜歡戶外運動的人中抽取6人作為樣本,從6人中隨機抽取三人進行跟蹤調(diào)查,那么這三人中至少有一名女性的概率是多少?
下面的臨界值表僅供參考:
P(k2≥k00.150.100.050.0250.0100.0050.001
K02.0722.7063.8415.0246.6357.87910.828
(參考公式:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習(xí)冊答案