11.正方體ABCD-A1B1C1D1中,A1C與截面DBC1交于O點,AC,BD交于M點.
(1)求證:A、M、A1、C1四點共面;
(2)求證:C1、O、M三點共線.

分析 (1)由A1C1∥AM,能證明A、M、A1、C1四點共面
(2)推導出C1、M、O都是平面A1ACC1和平面DBC1的公共點,由此能證明C1,O,M三點共線.

解答 證明:(1)∵正方體ABCD-A1B1C1D1中,
A1C與截面DBC1交于O點,AC,BD交于M點,
∴A1C1∥AM,
∴A、M、A1、C1四點共面
(2)證明:∵C1∈平面A1ACC1,且C1∈平面DBC1
∴C1是平面A1ACC1與平面DBC1的公共點.
又∵M∈AC,∴M∈平面A1ACC1
∵M∈BD,∴M∈平面DBC1
∴M也是平面A1ACC1與平面DBC1的公共點,
∴C1M是平面A1ACC1與平面DBC1的交線.
∵O為 A1C與截面DBC1的交點,
∴O∈平面A1ACC1,O∈平面DBC1,
即O也是兩平面的公共點,
∴O∈直線C1M,即C1,O,M三點共線.

點評 本題考查四點共面的證明,考查三點共線的證明,是基礎題,解題時要認真審題,注意平面的基本性質及推論的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.若A={x|-3≤x<1},B={x|x-a≥0},且A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知A(1,1,2),B(-1,2,1),O為坐標原點,則向量$\overrightarrow{OA}$與$\overrightarrow{OB}$的夾角是( 。
A.0B.$\frac{π}{3}$C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知關于x的不等式ax2+bx+c>0解集為(1,3),則cx2+bx+a<0的解集為(-∞,$\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知f(2x)=4x-3,g(x)=x2-2x+5,求:
(1)f(x)的表達式;
(2)f[g(x)]的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.己知二次函數(shù)f(x)=2x2+1,
(1)判斷函數(shù)的奇偶性
(2)用定義證明函數(shù)f(x)=2x2+1是[0,+∞)上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在四棱錐P-ABCD中,已知PA⊥平面ABCD,PB與平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=$\frac{1}{2}$AD.
(1)求證:平面PCD⊥平面PAC;
(2)設E是棱PD上一點,且PE=$\frac{1}{3}$PD,求異面直線AE與PB所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-4\begin{array}{l},{0≤x≤2}\end{array}}\\{2x\begin{array}{l},{x>2}\end{array}}\end{array}}\right.{,_{\;}}$則f(2)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若橢圓C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{_{1}}^{2}}$=1(a1>b1>0)和橢圓C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{_{2}}^{2}}$=1(a2>b2>0)的焦點相同,且a1>a2,則下面結論正確的是( 。
①橢圓C1和橢圓C2一定沒有公共點           ②a12-a22=b12-b22
③$\frac{{a}_{1}}{{a}_{2}}$>$\frac{_{1}}{_{2}}$                                 ④a1-a2<b1-b2
A.②③④B.①③④C.①②④D.①②③

查看答案和解析>>

同步練習冊答案