4.拋物線y2=8x的焦點(diǎn)為F,在該拋物線上存在一組點(diǎn)列P1(x1,y1),P2(x2,y2)…P1(x2017,y2017),使得|P1F|+|P2F|+…+|P2017F|=6051,則y12+y22+…+y20172=( 。
A.10085B.16128C.12102D.16136

分析 根據(jù)拋物線的性質(zhì)計(jì)算各點(diǎn)橫坐標(biāo)之和,從而得出結(jié)論.

解答 解:拋物線的準(zhǔn)線方程為x=-2,
由拋物線的性質(zhì)可知:|P1F|=x1+2,|P2F|=x2+2,…,|P2017F|=x2017+2,
∵|P1F|+|P2F|+…+|P2017F|=6051,
∴x1+x2+…+x2017=6051-2×2017=2017,
∴y12+y22+…+y20172=8x1+8x2+…+8x2017=8(x1+x2+…+x2017)=8×2017=16136.
故選D.

點(diǎn)評(píng) 本題考查了拋物線的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=2ax+x2-2xlna(a>0,a≠1)
(1)求函數(shù)f(x)的最小值;
(2)若存在x1,x2∈[0,1],使得|f(x1)-f(x2)|≥2e-3(e是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.設(shè)向量$\overrightarrow{a}$=(-1,-1,1),$\overrightarrow$=(-1,0,1),則cos<$\overrightarrow{a}$,$\overrightarrow$>=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.同時(shí)拋擲兩顆均勻的骰子,請(qǐng)回答以下問(wèn)題:
(1)求兩個(gè)骰子都出現(xiàn)2點(diǎn)的概率;
(2)若同時(shí)拋擲兩顆骰子180次,其中甲骰子出現(xiàn)20次2點(diǎn),乙骰子出現(xiàn)30次2點(diǎn),問(wèn)兩顆骰子出現(xiàn)2點(diǎn)是否相關(guān)?(χ2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}+{n}_{2}+{n}_{+1}{n}_{+2}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.“方程$\frac{{x}^{2}}{m}$$+\frac{{y}^{2}}{6-2m}$=1表示的曲線是焦點(diǎn)在y軸上的橢圓”的必要不充分條件是( 。
A.1<m<2B.0<m<2C.m<2D.m≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.    四棱錐P-ABCD的底面ABCD為邊長(zhǎng)為2的正方形,PA=2,PB=PD=2$\sqrt{2}$,E,F(xiàn),G,H分別為棱PA,PB,AD,CD的中點(diǎn).
(1)求CD與平面CFG所成角的正弦值;
(2)是探究棱PD上是否存在點(diǎn)M,使得平面CFG⊥平面MEH,若存在,求出$\frac{PM}{PD}$的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.某校從高一年級(jí)學(xué)生中隨機(jī)抽取100名學(xué)生,將他們期中考試的數(shù)學(xué)成績(jī)(均為整數(shù))分成六段:[40,50).[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示),則分?jǐn)?shù)在[60,80)內(nèi)的人數(shù)是45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.下列選項(xiàng)中是正確的賦值語(yǔ)句的是( 。
A.4=iB.B=A=3C.x+y=0D.i=1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在四邊形ABCD中,$\overrightarrow{AB}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{BC}$=-4$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{CD}$=-5$\overrightarrow{a}$-3$\overrightarrow$,其中$\overrightarrow{a}$,$\overrightarrow$不共線,則四邊形ABCD為( 。
A.平行四邊形B.矩形C.梯形D.菱形

查看答案和解析>>

同步練習(xí)冊(cè)答案