14.?dāng)?shù)列{an}中,a1=8,a4=2,且滿足an+2-2an+1+an=0.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)sn=|a1|+|a2|+…+|an|,求sn
(3)令${b_n}=(3n-9+{a_n})•{(\frac{10}{11})^n}$,試問(wèn)數(shù)列{bn}有沒(méi)有最大項(xiàng)?若有,求出最大項(xiàng)和最大項(xiàng)的項(xiàng)數(shù);若沒(méi)有,說(shuō)明理由.

分析 (1)由an+2-2an+1+an=0( n∈N*),變形為an+2-an+1=an+1-an,可知{an}為等差數(shù)列,由已知利用通項(xiàng)公式即可得出,
(2)令an=10-2n≥0,解得n≤5.令Tn=a1+a2+…+an=9n-n2.可得當(dāng)n≤5時(shí),Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn,n≥6時(shí),Sn=a1+a2+…+a5-a6-a7…-an=T5-(Tn-T5)=2T5-Tn即可得出,
(3)要想判斷一個(gè)數(shù)列有無(wú)最大項(xiàng),可以判斷數(shù)列的單調(diào)性,如果數(shù)列的前n項(xiàng)是遞增的,從n+1項(xiàng)開(kāi)始是遞減的,則bn(bn+1)即為數(shù)列的最大項(xiàng),故我們可以判斷構(gòu)造bn+1-bn的表達(dá)式,然后進(jìn)行分類討論,給出最終的結(jié)論.

解答 解:(1)∵an+2-2an+1+an=0( n∈N*
∴an+2-an+1=an+1-an,
∴{an}為等差數(shù)列,設(shè)公差為d,
由a1=8,a4=2可得2=8+3d,解得d=-2,
∴an=8-2(n-1)=10-2n.
(2)令an=10-2n≥0,解得n≤5.
令Tn=a1+a2+…+an=$\frac{1}{2}$n(8+10-2n)=9n-n2
∴當(dāng)n≤5時(shí),Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=Tn=9n-n2,
n≥6時(shí),Sn=a1+a2+…+a5-a6-a7…-an=T5-(Tn-T5)=2T5-Tn=n2-9n+40.
故Sn=$\left\{\begin{array}{l}{9n-{n}^{2},n≤5}\\{{n}^{2}-9n+40,n≥6}\end{array}\right.$,
(3):${b_n}=(3n-9+{a_n})•{(\frac{10}{11})^n}$=(n+1)•($\frac{10}{11}$)n,
∵bn+1-bn=(n+2)($\frac{10}{11}$)n+1-(n+1)($\frac{10}{11}$)n
=$\frac{9-n}{11}$•($\frac{10}{11}$)n
∴當(dāng)n<9時(shí),bn+1-bn>0,即bn+1>bn;
當(dāng)n=9時(shí),bn+1-bn=0,即bn+1=bn;
當(dāng)n>9時(shí),bn+1-bn<0,即bn+1<bn;
故b1<b2<b3<…<b9=b10>b11>b12>….
∴數(shù)列{bn}有最大項(xiàng)b9或b10,
其值為10•($\frac{10}{11}$)9,其項(xiàng)數(shù)為9或10.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、含有絕對(duì)值的數(shù)列的前n項(xiàng)和的求法、分類討論等基礎(chǔ)知識(shí)與基本技能方法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若拋物線y2=2px(p>0)的準(zhǔn)線經(jīng)過(guò)橢圓$\frac{x^2}{4}+\frac{y^2}{2}=1$的一個(gè)焦點(diǎn),則p等于2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.袋中有大小相同的5個(gè)球,分別標(biāo)有1,2,3,4,5五個(gè)號(hào)碼,現(xiàn)在取出兩個(gè)球,設(shè)兩個(gè)球號(hào)碼之和為隨機(jī)變量ξ,則ξ所有可能取值的個(gè)數(shù)是( 。
A.5B.7C.6D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)$a={(\frac{1}{3})^{\frac{1}{2}}},b={(\frac{1}{3})^{\frac{3}{4}}},c={log_3}\frac{9}{10}$,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.①求下列函數(shù)的定積分:(1)${∫}_{0}^{2}$(3x2+4x3)dx;(2)${∫}_{0}^{1}$(ex+2x)dx
②求下列函數(shù)的導(dǎo)數(shù):(1)y=$\frac{{x}^{2}+sin2x}{{e}^{x}}$   (2)y=ln$\frac{2x+1}{2x-1}$($x>\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若1+i是關(guān)于x的實(shí)系數(shù)方程x2+bx+c=0的一個(gè)復(fù)數(shù)根,則(  )
A.b=-2,c=3B.b=-2,c=2C.b=-2,c=-1D.b=2,c=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=x2(ex-1)+ax3若當(dāng)x≥0時(shí),f(x)≥0恒成立,則a的取值范圍[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.第26屆世界大學(xué)生夏季運(yùn)動(dòng)會(huì)將于2011年8月12日到23日在深圳舉行,為了搞好接待工作,組委會(huì)在某學(xué)院招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如圖所示的莖葉圖(單位:cm):
若身高在175cm以上(包括175cm)定義為“高個(gè)子”,身高在175cm以下(不包括175cm)定義為“非高個(gè)子”,且只有“女高個(gè)子”才擔(dān)任“禮儀小姐”.
(1)如果用分層抽樣的方法從“高個(gè)子”和“非高個(gè)子”中提取5人,再?gòu)倪@5人中選2人,那么至少有一人是“高個(gè)子”的概率是多少?
(2)若從所有“高個(gè)子”中選3名志愿者,用ξ表示所選志愿者中能擔(dān)任“禮儀小姐”的人數(shù),試寫(xiě)出ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)f(x)=x2+2ax-1在區(qū)間(-∞,$\frac{3}{2}$]上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,$\frac{3}{2}$]B.[-$\frac{3}{2}$,+∞)C.[$\frac{3}{2}$,+∞)D.(-∞,-$\frac{3}{2}$]

查看答案和解析>>

同步練習(xí)冊(cè)答案