7.已知點(diǎn)P(1,1)和圓C:x2+y2=4,過(guò)P的直線l與圓C交于A,B,則弦AB長(zhǎng)的最小值為2$\sqrt{2}$;此時(shí)的直線l的方程為x+y-2=0.

分析 過(guò)點(diǎn)P的直線中,被圓截得的弦長(zhǎng)最短時(shí),弦心距最大,故當(dāng)且僅當(dāng)與CP垂直時(shí),弦長(zhǎng)最短,求出直線的斜率,即可得到直線的方程.

解答 解:過(guò)點(diǎn)P的直線中,被圓截得的弦長(zhǎng)最短時(shí),弦心距最大,
故當(dāng)且僅當(dāng)與CP垂直時(shí),弦長(zhǎng)最短,
∵CP的斜率為1,
∴所求直線的斜率為-1,
∴所求直線的方程為y-1=-(x-1),即x+y-2=0,
∵|CP|=$\sqrt{2}$,∴|AB|=2$\sqrt{4-2}$=2$\sqrt{2}$.
故答案為:2$\sqrt{2}$;x+y-2=0.

點(diǎn)評(píng) 本題考查直線和圓的方程的運(yùn)用,考查弦長(zhǎng)問(wèn)題,解題的關(guān)鍵是得到過(guò)點(diǎn)P的直線中,被圓截得的弦長(zhǎng)最短時(shí),弦心距最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)a∈R,若對(duì)任意的x>0時(shí)均有[(a-1)x-1]•(x2-ax-1)≥0,則a=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,離心率e=$\frac{1}{2}$,F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),AB是過(guò)右焦點(diǎn)的弦.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)求△ABF1的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.化簡(jiǎn):$\frac{{cos(\frac{3π}{2}+α)cos(3π-α)tan(-π-α)tan(α-2π)}}{tan(4π-α)sin(5π+α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若函數(shù)f(x)=$\left\{\begin{array}{l}{(2a-4)x-a(x<1)}\\{lo{g}_{a}x(x≥1)}\end{array}\right.$是R上的增函數(shù),則a的取值范圍是(2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)a=($\frac{2}{3}$)0.2,b=1.30.7,c=($\frac{2}{3}$)${\;}^{\frac{1}{3}}$,則a,b,c的大小關(guān)系是( 。
A.a>c>bB.b>a>cC.c>a>bD.a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0)的最大值為4,最小值為-4,最小正周期為$\frac{π}{2}$,直線x=$\frac{π}{3}$是其圖象的一條對(duì)稱軸,則符合條件的函數(shù)解析式是( 。
A.y=4sin(4x+$\frac{π}{6}$)B.y=4sin(4x+$\frac{π}{3}$)C.y=2sin(4x+$\frac{π}{3}$)D.y=2sin(4x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.一個(gè)四棱錐和一個(gè)三棱錐恰好可以拼接成一個(gè)三棱柱,這個(gè)四棱錐的底面為正方形,且底面邊長(zhǎng)與各側(cè)棱長(zhǎng)相等,這個(gè)三棱錐的底面邊長(zhǎng)與各側(cè)棱長(zhǎng)也都相等,設(shè)四棱錐、三棱錐、三棱柱的高分別為h1,h2,h3,則h1:h2:h3=$\sqrt{3}$:2:2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若a,b在區(qū)間$[{0,\sqrt{3}}]$上取值,則函數(shù)$f(x)=\frac{1}{3}a{x^3}+b{x^2}+\frac{1}{4}ax$在R上有兩個(gè)相異極值點(diǎn)的概率是( 。
A.$\frac{1}{4}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案