分析 由已知可得f(x)=$\frac{lnx}{x}$,分析出f(x)=$\frac{lnx}{x}$的圖象和性質(zhì),可得實(shí)數(shù)a的取值范圍.
解答 解:令g(x)=x2f(x),
則g′(x)=x2f′(x)+2xf(x)=1+lnx,
∴g(x)=x•lnx+c,
∴f(x)=$\frac{x•lnx+c}{{x}^{2}}$,
∵f(1)=c=0,
∴f(x)=$\frac{x•lnx}{{x}^{2}}$=$\frac{lnx}{x}$,
∴f′(x)=$\frac{1-lnx}{{x}^{2}}$,
當(dāng)x∈(0,e)時(shí),f′(x)>0,f(x)為增函數(shù),
當(dāng)x∈(e,+∞)時(shí),f′(x)<0,f(x)為減函數(shù),
故當(dāng)x=e時(shí),f(x)取最大值$\frac{1}{e}$,
又由$\lim_{x→0}f(x)=-∞$,$\lim_{x→+∞}f(x)=0$,
故若關(guān)于x的方程f(x)=a有兩個(gè)不等實(shí)數(shù)根,則實(shí)數(shù)a∈(0,$\frac{1}{e}$),
故答案為:(0,$\frac{1}{e}$)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根的存在性及極的個(gè)數(shù)判斷,導(dǎo)數(shù)法判斷函數(shù)的單調(diào)性和最值,難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [2$\sqrt{3}$,+∞) | B. | (-∞,2$\sqrt{3}$] | C. | (-∞,2$\sqrt{3}$]∪(2$\sqrt{3}$,+∞) | D. | [-2$\sqrt{3}$,2$\sqrt{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x+1 | B. | y=$\sqrt{x+1}$ | C. | y=($\frac{1}{2}$)x | D. | y=-$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 45° | B. | 30° | C. | 60° | D. | 30°或150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com