4.在△ABC中,a=2,b=$\sqrt{2}$,A=45°,則B等于(  )
A.45°B.30°C.60°D.30°或150°

分析 利用正弦定理列出關(guān)系式,將a,b及cosA的值代入求出sinB的值,利用特殊角的三角函數(shù)值即可求出B的度數(shù).

解答 解:∵A=45°,a=2,b=$\sqrt{2}$,
∴由正弦定理$\frac{a}{sinA}=\frac{sinB}$得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{2}×\frac{\sqrt{2}}{2}}{2}$=$\frac{1}{2}$,
∵2>$\sqrt{2}$,即a>b,∴A>B,
則B=30°.
故選:B.

點評 此題考查了正弦定理,特殊角的三角函數(shù)值,以及三角形的邊角關(guān)系,熟練掌握正弦定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某機床廠用98萬元購進一臺數(shù)控機床,第一年維修、保養(yǎng)費用12萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加4萬元,該機床使用后,從第一年開始每年的收入均為50萬元.設(shè)使用x年后數(shù)控機床的盈利總額為y萬元.
(1)寫出y與x之間的函數(shù)關(guān)系式;并求第幾年開始,該機床開始盈利;
(2)問哪一年平均盈利額最大、最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{a{x}^{2}+x,x>1}\end{array}\right.$在R上單調(diào)遞減,在實數(shù)a的取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)定義在(0,+∞)上的函數(shù)f(x)滿足x2f′(x)+2xf(x)=1+lnx,f(1)=0,若關(guān)于x的方程f(x)=a有兩個不等實數(shù)根,則實數(shù)a的取值范圍為(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{alnx}{x}$在x=1處的切線經(jīng)過點(0,-1).
(I)求f(x)的單調(diào)區(qū)間;
(Ⅱ)當x∈(0,+∞)時,若不等式f(x)≤x2-x+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.計算:
(1)$\frac{1}{\sqrt{0.04}}$+($\frac{1}{\sqrt{27}}$)${\;}^{\frac{1}{3}}$+($\sqrt{2}$+1)-1-2${\;}^{\frac{1}{2}}$+(-2)0;
(2)$\frac{2}{5}$lg32+lg50+$\sqrt{(lg3)^{2}-lg9+1}$-lg$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“x>2或x<0”是“$\frac{1}{x}<1$”的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在四邊形ABCD中,設(shè)$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{BC}=\overrightarrow$,$\overrightarrow{AD}$=$\overrightarrow{c}$,則$\overrightarrow{CD}$等于( 。
A.$\overrightarrow{c}$-($\overrightarrow{a}$+$\overrightarrow$)B.$\overrightarrow$-($\overrightarrow{a}+\overrightarrow{c}$)C.$\overrightarrow{a}+\overrightarrow-\overrightarrow{c}$D.$\overrightarrow{a}-\overrightarrow+\overrightarrow{c}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}、{bn}滿足:a1=$\frac{1}{4}$,an+bn=1,bn+1=$\frac{_{n}}{1{-a}_{n}^{2}}$.
(1)求證數(shù)列{$\frac{1}{_{n}-1}$}是等差數(shù)列;
(2)若cn=$\frac{{a}_{n}{-a}_{n}^{2}}{{2}^{n}(1-2{a}_{n})(1-3{a}_{n})}$,求數(shù)列{cn}的前n項和Sn≥$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案