【題目】如圖所示,在棱長(zhǎng)為2cm的正方體ABCD﹣A1B1C1D1中,A1B1的中點(diǎn)是P,過點(diǎn)A1作出與截面PBC1平行的截面,簡(jiǎn)單證明截面形狀,并求該截面的面積.
【答案】解:取AB、C1D1的中點(diǎn)M、N,連結(jié)A1M、MC、CN、NA1 .
由于A1N∥PC1∥MC且A1N=PC1=MC,
∴四邊形A1MCN是平行四邊形.
又∵A1N∥PC1 , A1M∥BP,A1N∩A1M=A1 ,
PC1∩BP=P,
∴平面A1MCN∥平面PBC1
因此,過A1點(diǎn)作與截面PBC1平行的截面是平行四邊形.
又連結(jié)MN,作A1H⊥MN于H,由于A1M=A1N=,MN=2,
則AH=.
∴
故 S平行四邊形A1MCN=2=2(cm2).
【解析】根據(jù)線面平行的定義和性質(zhì)可以證明與截面PBC1平行的截面是平行四邊形.然后求平行四邊形的面積即可.
【考點(diǎn)精析】通過靈活運(yùn)用平面與平面平行的性質(zhì),掌握如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平;可以由平面與平面平行得出直線與直線平行即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年3月14日,“共享單車”終于來(lái)到蕪湖,共享單車又被親切稱作“小黃車”是全球第一個(gè)無(wú)樁共享單車平臺(tái),開創(chuàng)了首個(gè)“單車共享”模式.相關(guān)部門準(zhǔn)備對(duì)該項(xiàng)目進(jìn)行考核,考核的硬性指標(biāo)是:市民對(duì)該項(xiàng)目的滿意指數(shù)不低于,否則該項(xiàng)目需進(jìn)行整改,該部門為了了解市民對(duì)該項(xiàng)目的滿意程度,隨機(jī)訪問了使用共享單車的名市民,并根據(jù)這名市民對(duì)該項(xiàng)目滿意程度的評(píng)分(滿分分),繪制了如下頻率分布直方圖:
(I)為了了解部分市民對(duì)“共享單車”評(píng)分較低的原因,該部門從評(píng)分低于分的市民中隨機(jī)抽取人進(jìn)行座談,求這人評(píng)分恰好都在的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過考核,并說(shuō)明理由.
(注:滿意指數(shù)=)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)函數(shù) ,有下列說(shuō)法:
①f(x)的周期為4π,值域?yàn)閇﹣3,1];
②f(x)的圖象關(guān)于直線 對(duì)稱;
③f(x)的圖象關(guān)于點(diǎn) 對(duì)稱;
④f(x)在 上單調(diào)遞增;
⑤將f(x)的圖象向左平移 個(gè)單位,即得到函數(shù) 的圖象.
其中正確的是 . (填上所有正確說(shuō)法的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列四個(gè)正方體圖形中,A、B為正方體的兩個(gè)頂點(diǎn),M、N、P分別為其所在棱的中點(diǎn),能得出AB∥平面MNP的圖形序號(hào)是( 。
A.①②
B.③④
C.②③
D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在海島上有一座海拔的山峰,山頂設(shè)有一個(gè)觀察站,有一艘輪船按一固定方向做勻速直線航行,上午時(shí),測(cè)得此船在島北偏東、俯角為的處,到時(shí),又測(cè)得該船在島北偏西、俯角為的處.
(1)求船的航行速度;
(2)求船從到行駛過程中與觀察站的最短距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AC⊥BC,E、F分別在線段B1C1和AC上,B1E=3EC1 , AC=BC=CC1=4
(1)求證:BC⊥AC1;
(2)試探究滿足EF∥平面A1ABB1的點(diǎn)F的位置,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分10分)已知等差數(shù)列{an}滿足a1+a2=10,a4-a3=2.
(1)求{an}的通項(xiàng)公式.
(2)設(shè)等比數(shù)列{bn}滿足b2=a3,b3=a7.問:b6與數(shù)列{an}的第幾項(xiàng)相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知α∈,且sin +cos = .
(1)求cos α的值;
(2)若sin(α-β)=- ,β∈,求cos β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家為了鼓勵(lì)節(jié)約用水,實(shí)行階梯用水收費(fèi)制度,價(jià)格參照表如表:
用水量(噸) | 單價(jià)(元/噸) | 注 |
0~20(含) | 2.5 | |
20~35(含) | 3 | 超過20噸不超過35噸的部分按3元/噸收費(fèi) |
35以上 | 4 | 超過35噸的部分按4元/噸收費(fèi) |
(1)若小明家10月份用水量為30噸,則應(yīng)繳多少水費(fèi)?
(2)若小明家10月份繳水費(fèi)99元,則小明家10月份用水多少噸?
(3)寫出水費(fèi)y與用水量x之間的函數(shù)關(guān)系式,并畫出函數(shù)的圖象.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com