精英家教網 > 高中數學 > 題目詳情

【題目】如圖,下列四個正方體圖形中,A、B為正方體的兩個頂點,M、N、P分別為其所在棱的中點,能得出AB∥平面MNP的圖形序號是( 。

A.①②
B.③④
C.②③
D.①④

【答案】D
【解析】解:對于①,該正方體的對角面ADBC∥平面MNP,得出直線AB∥平面MNP;
對于②,直線AB和平面MNP不平行,因此直線AB與平面MNP相交;
對于③,易知平面PMN與正方體的側面AB相交,得出AB與平面MNP相交;
對于④,直線AB與平面MNP內的一條直線NP平行,且直線AB平面MNP,∴直線AB∥平面MNP;
綜上,能得出直線AB∥平面MNP的圖形的序號是①④.
故選:D.
【考點精析】解答此題的關鍵在于理解直線與平面平行的判定的相關知識,掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知命題p:不等式(m1)x2(m1)x2>0的解集是R,命題qsin xcos x>m.如果對于任意的xR,命題p是真命題且命題q為假命題,求m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2013·湖北高考)四名同學根據各自的樣本數據研究變量x,y之間的相關關系,并求得回歸直線方程,分別得到以下四個結論:

yx負相關且=2.347x-6.423;

yx負相關且=-3.476x+5.648;

yx正相關且=5.437x+8.493;

yx正相關且=-4.326x-4.578.

其中一定不正確的結論的序號是( )

A. ①② B. ②③ C. ③④ D. ①④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】東莞市某高級中學在今年4月份安裝了一批空調,關于這批空調的使用年限 (單位:年, )和所支出的維護費用(單位:萬元)廠家提供的統計資料如下:

使用年限 ()

1

2

3

4

5

維護費用(萬元)

6

7

7.5

8

9

請根據以上數據,用最小二乘法原理求出維護費用關于的線性回歸方程;

若規(guī)定當維護費用超過13.1萬元時,該批空調必須報廢,試根據(1)的結論求該批空調使用年限的最大值.

參考公式:最小二乘估計線性回歸方程中系數計算公式:

,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓關于直線對稱的圓為.

(1)求圓的方程;

(2)過點作直線與圓交于兩點, 是坐標原點,是否存在這樣的直線,使得在平行四邊形?若存在,求出所有滿足條件的直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在三棱錐A﹣BCD中,E,F,G,H分別是棱AB,BC,CD,DA的中點,則當AC,BD滿足條件 時,四邊形EFGH為菱形.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在棱長為2cm的正方體ABCD﹣A1B1C1D1中,A1B1的中點是P,過點A1作出與截面PBC1平行的截面,簡單證明截面形狀,并求該截面的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四面體中,平面平面 , 分別為, , 的中點, , .

(1)求證: 平面

(2)若上任一點,證明平面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,四邊形中, , ,將四邊形沿著折疊,得到圖2所示的三棱錐,其中

(1)證明:平面平面;

(2)若中點,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案