【題目】如圖過拋物線的焦點(diǎn)的直線依次交拋物線及準(zhǔn)線于點(diǎn),若,且,則( )
A.2B.C.3D.6
【答案】B
【解析】
分別過點(diǎn)A,B作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|=a,根據(jù)拋物線定義可知|BD|=a,進(jìn)而推斷出∠BCD的值,在直角三角形中求得a,進(jìn)而根據(jù)BD∥FG,利用比例線段的性質(zhì)可求得p.
如圖,分別過點(diǎn)A,B作準(zhǔn)線的垂線,分別交準(zhǔn)線于點(diǎn)E,D,設(shè)|BF|=a,則由得:|BC|=2a,
由拋物線定義得:|BD|=|BF|=a,在直角三角形中,∠BCD=30°,
在直角三角形AEC中,∵|AF|=3,由拋物線定義得:|AE|=3,∴|AC|=3+3a,∴2|AE|=|AC|,
∴3+3a=6,從而得a=1,∵BD∥FG,∴ 得p=.
故選:B
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間內(nèi)沒有發(fā)生大規(guī)模群體感染的標(biāo)志是“連續(xù)10日,每天新增疑似病例不超過7人”.已知過去10日,、、三地新增疑似病例數(shù)據(jù)信息如下:
地:總體平均數(shù)為3,中位數(shù)為4;
地:總體平均數(shù)為2,總體方差為3;
地:總體平均數(shù)為1,總體方差大于0;
則、、三地中,一定沒有發(fā)生大規(guī)模群體感染的是__________地.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位.已知圓和圓的極坐標(biāo)方程分別是和.
(1)求圓和圓的公共弦所在直線的直角坐標(biāo)方程;
(2)若射線:與圓的交點(diǎn)為O、P,與圓的交點(diǎn)為O、Q,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直三棱柱中,,,,,點(diǎn)在線段上.
(1)若,求異面直線和所成角的余弦值;
(2)若直線與平面所成角為,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面,,.
(1)求證:平面;
(2)求異面直線與所成角的大;
(3)點(diǎn)在線段上,且,點(diǎn)在線段上,若平面,求的值(用含的代數(shù)式表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)若直線l與曲線C相交于A,B兩點(diǎn).求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某飲料廠生產(chǎn)兩種飲料.生產(chǎn)1桶飲料,需該特產(chǎn)原料100公斤,需時(shí)間3小時(shí);生產(chǎn)1桶 飲料需該特產(chǎn)原料100公斤,需時(shí)間1小時(shí),每天飲料的產(chǎn)量不超過飲料產(chǎn)量的2倍,每天生產(chǎn)兩種飲料所需該特產(chǎn)原料的總量至多750公斤,每天生產(chǎn)飲料的時(shí)間不低于生產(chǎn)飲料的時(shí)間,每桶飲料的利潤是每桶飲料利潤的1.5倍,若該飲料廠每天生產(chǎn)飲料桶,飲料桶時(shí)()利潤最大,則_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正四棱錐的底面邊長為高為其內(nèi)切球與面切于點(diǎn),球面上與距離最近的點(diǎn)記為,若平面過點(diǎn),且與平行,則平面截該正四棱錐所得截面的面積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,,函數(shù).
(1)求函數(shù)的最小正周期與圖象的對(duì)稱軸方程;
(2)若,,函數(shù)的最小值是,最大值是2,求實(shí)數(shù),的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com