【題目】已知圓C:x2+(y-a)2=4,點A(1,0).
(1)當過點A的圓C的切線存在時,求實數(shù)a的取值范圍;
(2)設AM、AN為圓C的兩條切線,M、N為切點,當MN=時,求MN所在直線的方程.
【答案】(1)a≥或a≤-.(2)x-2y=0或x+2y=0.
【解析】試題分析:(1)由直線與圓的位置關系,得當點A在圓外或圓上過點A的圓C的切線存在.再由點與圓的位置關系,建立關于a的不等式,解之即得實數(shù)a的取值范圍;
(2)根據(jù)圓的對稱性得到|DM|=|MN|=.利用垂徑定理算出CD的長度,在Rt△MCD中,算出cos∠MCD的值,得cos∠MCA=.然后在Rt△MCA中利用解三角形知識算出AC長,結合|OC|=2得出|AM|=1.由題意知MN是以A為圓心、半徑為AM的圓與圓C的公共弦,由此列式即可求出MN所在直線的方程.
試題解析:(1)過點A的切線存在,即點A在圓外或圓上,
∴1+a2≥4,∴a≥或a≤-.
(2)設MN與AC交于點D,O為坐標原點.
∵MN=,∴DM=.
又MC=2,∴CD==,
∴cos∠MCA==
∵AC==,∴OC=2,AM=1,
MN是以點A為圓心,半徑AM=1的圓A與圓C的公共弦,圓A的方程為(x-1)2+y2=1
圓C的方程為x2+(y-2)2=4,或x2+(y+2)2=4,
∴MN所在直線的方程為:(x-1)2+y2-1-x2-(y-2)2+4=0,
即x-2y=0或(x-1)2+y2-1-x2-(y+2)2+4=0,
即x+2y=0,因此,MN所在直線的方程為x-2y=0或x+2y=0.
科目:高中數(shù)學 來源: 題型:
【題目】如圖矩形中, .點在邊上, 且, 沿直線向上折起成.記二面角的平面角為,當 時,
①存在某個位置,使;
②存在某個位置,使;
③任意兩個位置,直線和直線所成的角都不相等.
以上三個結論中正確的序號是
A. ① B. ①② C. ①③ D. ②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)有兩個不同的極值點,,且.
(1)求實數(shù)的取值范圍;
(2)設上述的取值范圍為,若存在,使對任意,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知m,n∈R+,f(x)=|x+m|+|2x-n|.
(1)當m=n=1時,求f(x)的最小值;
(2)若f(x)的最小值為2,求證.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項等比數(shù)列{an}(n∈N*),首項a1=3,前n項和為Sn,且S3+a3、S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{nan}的前n項和為Tn,若對任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某批次的某種燈泡中,隨機地抽取個樣品,并對其壽命進行追蹤調(diào)查,將結果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.
壽命(天) | 頻數(shù) | 頻率 |
合計 |
(Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出, 的值.
(Ⅱ)某人從燈泡樣品中隨機地購買了個,求個燈泡中恰有一個是優(yōu)等品的概率.
(Ⅲ)某人從這個批次的燈泡中隨機地購買了個進行使用,若以上述頻率作為概率,用表示此人所購買的燈泡中次品的個數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017·安徽名校階段性測試)如圖所示,正方形ABCD所在平面與圓O所在平面相交于CD,線段CD為圓O的弦,AE垂直于圓O所在平面,垂足E是圓O上異于C,D的點,AE=3,圓O的直徑CE=9.
(1)求證:平面ABE⊥平面ADE;
(2)求五面體ABCDE的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com