【題目】已知函數(shù)fx)=ax2+2axlnx1,aR

1)當(dāng)a時,求fx)的單調(diào)區(qū)間及極值;

2)若a為整數(shù),且不等式fxx對任意x∈(0+∞)恒成立,求a的最小值.

【答案】1)單調(diào)遞減區(qū)間為(01),單調(diào)遞增區(qū)間為(1,+∞),極小值為,無極大值;(21

【解析】

1)對函數(shù)求導(dǎo),根據(jù)導(dǎo)數(shù)的符號求單調(diào)區(qū)間與極值;

2)先由,再構(gòu)造函數(shù),求導(dǎo)研究其單調(diào)性及最小值,由其最小值非負(fù)求得的最小值.

解:(1)當(dāng)時,,,,令,解得或1.易知當(dāng)時,;當(dāng)時,.故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無極大值;

(2)不等式對任意恒成立,當(dāng)時,有,解得,為整數(shù),

.令,

,易知上單調(diào)遞減,在,上單調(diào)遞增,

不等式對任意恒成立,,即.令,

單調(diào)遞增,且

.所以的最小值為1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

(注意:在試題卷上作答無效)

已知5只動物中有1只患有某種疾病,需要通過化驗血液來確定患病的動物.血液化驗結(jié)果呈陽性的即為患病動物,呈陰性即沒患病.下面是兩種化驗方案:

方案甲:逐個化驗,直到能確定患病動物為止;

方案乙:先任取3只,將它們的血液混在一起化驗.若結(jié)果呈陽性則表明患病動物為這3只中的1只,然后再逐個化驗,直到能確定患病動物為止;若結(jié)果呈陰性則在另外2只中任取1只化驗.

求依方案甲所需化驗次數(shù)不少于依方案乙所需化驗次數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①,且,②,且,③,且這三個條件中任選一個,補(bǔ)充在下面問題中,若問題中的存在,求出和數(shù)列的通項公式與前項和;若不存在,請說明理由.

設(shè)為各項均為正數(shù)的數(shù)列的前項和,滿足________,是否存在,使得數(shù)列成為等差數(shù)列?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnxsinx,記fx)的導(dǎo)函數(shù)為f'x).

1)若hx)=axf'x)是(0,+∞)上的單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;

2)若x0,2π),試判斷函數(shù)fx)的極值點(diǎn)個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù).

(Ⅰ)判斷函數(shù)的單調(diào)性;

(Ⅱ)若時,對任意,不等式恒成立,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1是某高架橋箱梁的橫截面,它由上部路面和下部支撐箱兩部分組成.如圖2,路面寬度,下部支撐箱CDEF為等腰梯形(),且.為了保證承重能力與穩(wěn)定性,需下部支撐箱的面積為,高度為2m,若路面AB側(cè)邊CFDE,底部EF的造價分別為4a千元/m5a千元/m,6a千元/ma為正常數(shù)),

1)試用θ表示箱梁的總造價y(千元);

2)試確定cosθ的值,使總造價最低?并求最低總造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)實數(shù),整數(shù)

(1)證明:當(dāng)時,

(2)數(shù)列滿足, ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為實現(xiàn)國民經(jīng)濟(jì)新三步走的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅的力度.某地區(qū)在2015 年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開始,全面實施精準(zhǔn)扶貧政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加該項目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項目的脫貧率見下表:

實施項目

種植業(yè)

養(yǎng)殖業(yè)

工廠就業(yè)

服務(wù)業(yè)

參加用戶比

脫貧率

那么年的年脫貧率是實施精準(zhǔn)扶貧政策前的年均脫貧率的(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,四邊形為平行四邊形,三角形為等邊三角形,已知,,.

1)求證:

2)求直線與面所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案