已知集合M={1,2,zi},i為虛數(shù)單位,N={3,4},若M∩N={4},則復(fù)數(shù)z的共軛復(fù)數(shù)z的虛部是( 。
A、-4iB、4iC、-4D、4
考點:交集及其運算,復(fù)數(shù)代數(shù)形式的乘除運算
專題:集合
分析:由M與N交集中的元素為4,得到4為M中的元素,即可得到結(jié)果.
解答: 解:∵M(jìn)={1,2,zi},N={3,4},且M∩N={4},
∴zi=4,即z=-4i,
則復(fù)數(shù)z的共軛復(fù)數(shù)z的虛部是4,
故選:D.
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式 
x2-2x-3
x2+x-2
≤0
的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

AB
=(3,6),
AC
=(1,2).則
BC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
x2(x<0)
3x+1(x≥0)
,g(x)=
2-x2(x≤1)
2(x>1)
,則f(g(3))=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(n)=1+
1
2
+
1
3
+…+
1
2n+1
(n∈N),則n=1時,f(n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x、y、z為非零實數(shù),代數(shù)式
|x|
x
+
|y|
y
+
|z|
z
+
|xyz|
xyz
的值所組成的集合為M,則M=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=
6
,求直線A1C與平面ABCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P:x2-8x-20≤0,Q:x2-2x+1-m2≤0
(1)若P是Q的充分不必要條件,求m的范圍;
(2)若S:“P是Q的充分不必要條件”,T:“0<m<10“,滿足S或T為真,“S且T”為假,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

十進(jìn)制的四位自然數(shù)的反序數(shù)是指千位數(shù)字與個位數(shù)字位置對調(diào),百位數(shù)字與十位數(shù)字位置對調(diào),例如4852的反序數(shù)就是2584.1955年,卡普耶卡研究了對四位自然數(shù)的一種變換:任給出四位數(shù)a0,用a0的四個數(shù)字由大到小重新排列成一個四位數(shù)m,再用數(shù)m減去m的反序數(shù)n得出數(shù)a1=m-n,然后繼續(xù)對a1重復(fù)上述變換,得數(shù)a2,…,如此進(jìn)行下去,卡普耶卡發(fā)現(xiàn),無論a0是怎樣的四位數(shù),只要四個數(shù)字不全相同,最多進(jìn)行k此上述變換,就會出現(xiàn)前后相同的四位數(shù)t.請你研究兩個十進(jìn)制四位數(shù)6264和3996,可得四位數(shù)t=
 

查看答案和解析>>

同步練習(xí)冊答案