1.已知圓O1的方程為x2+y2=4,圓O2的方程為(x-a)2+(y-1)2=1,那么這兩個圓的位置關系不可能是( 。
A.外離B.外切C.內(nèi)含D.內(nèi)切

分析 求出兩個圓的圓心與半徑,利用圓心距與半徑的關系,判斷選項即可.

解答 解:圓O1的方程為x2+y2=4,圓心(0,0),半徑為2;
圓O2的方程為(x-a)2+(y-1)2=1,圓心(a,0)半徑為:1,
圓心距為:$\sqrt{{a}^{2}+1}$≥1=2-1,
所以兩個圓的位置關系不可能是內(nèi)含.
故選:C.

點評 本題考查兩個圓的位置關系的判斷與應用,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.某校高三共有900名學生,高三模擬考之后,為了了解學生學習情況,用分層抽樣方法從中抽出若干學生此次數(shù)學成績,按成績分組,制成如下的頻率分布表:
組號第一組第二組第二組第四組
分組[70,80)[80,90)[90,100)[100,110)
頻數(shù)642220
頻率0.060.040.220.20
組號第五組第六組第七組第八組
分組[110,120)[120,130)[130,140)[140,150]
頻數(shù)18a105
頻率b0.150.100.05
(1)若頻數(shù)的總和為c,試求a,b,c的值;
(2)估計該校本次考試的數(shù)學平均分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知點P($\sqrt{3}$,-1),Q(sin2x,cos2x),O為坐標原點,函數(shù)f(x)=$\overrightarrow{OP}•\overrightarrow{OQ}$.
(1)求函數(shù)f(x)的對稱中心和單調(diào)增區(qū)間;
(2)若A為△ABC的內(nèi)角,a,b,c分別為角A,B,C的對邊,f(A)=2,a=5,求△ABC周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某企業(yè)尋找甲、乙兩家代工廠為其生產(chǎn)某種產(chǎn)品,并通過檢測該產(chǎn)品的某項指標值來衡量產(chǎn)品是否合格.現(xiàn)從甲、乙生產(chǎn)的大量產(chǎn)品中各隨機抽取50件產(chǎn)品作為樣本,測量出它們的該項指標值,若指標值落在(170,230]內(nèi),則為合格品,否則為不合格品.表是甲廠樣本的頻數(shù)分布表,如圖是乙廠樣本的頻率分布直方圖.
質量指標值頻數(shù)
(150,170]3
(170,190]12
(190,210]20
(210,230]a
(230,250]7
表:甲廠樣本的頻數(shù)分布表
(I) 求頻數(shù)分布表中a的值,并將頻率分布直方圖補充完整;
(II) 若將頻率視為概率,某個月內(nèi),甲、乙兩廠均生產(chǎn)了5000件產(chǎn)品,則甲、乙兩廠分別生產(chǎn)出不合格品約多少件?
(III)根據(jù)已知條件完成下面的2×2列聯(lián)表,并回答能否有85%的把握認為“該企業(yè)生產(chǎn)的這種產(chǎn)品的該項質量指標值與甲、乙兩廠的選擇有關”?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d為樣本容量)
甲廠乙廠合計
 合格品
不合格品
合計
P(K2≥k)0.150.100.050.010
k2.0722.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.函數(shù)$f(x)=sinx,x∈[0,\frac{3π}{2}]$的單調(diào)遞增區(qū)間是(  )
A.$[0,\frac{π}{2}]$B.[0,π]C.$[\frac{π}{2},π]$D.$[\frac{π}{2},\frac{3π}{2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.如果直線3x-y=0與直線mx+y-1=0平行,那么m的值為( 。
A.-3B.$-\frac{1}{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.在△ABC 中,a,b,c 分別是內(nèi)角 A,B,C 的對邊,若c=4$\sqrt{2}$,B=45°,△ABC 的面積S=2,則a=1;b=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,已知a=$\sqrt{3}$-1,b=$\frac{\sqrt{6}}{2}$,C=$\frac{π}{4}$,則△ABC是( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.任意三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知定義在R上的函數(shù)f(x),周期為4,當x∈[0,4)時,f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,0≤x<2}\\{2x-4,2≤x<4}\end{array}\right.$,當x∈(-4,b)時,函數(shù)y=f(x)-1有5個零點,則實數(shù)b的取值范圍為( 。
A.(5,$\frac{13}{2}$]B.[5,$\frac{13}{2}$)C.(5,$\frac{13}{2}$)D.[5,$\frac{13}{2}$]

查看答案和解析>>

同步練習冊答案