分析 (1)由題意知本題是一個(gè)超幾何分步,隨機(jī)變量X表示所選3人中女生的人數(shù),X可能取的值為0,1,2,且$P({X=k})=\frac{{C_2^kC_4^{3-k}}}{C_6^3},k=0,1,2$,由此能求出X的分布列.
(2)由X的分布列能求出所選3人中最多有一名女生的概率.
解答 解:(1)由題意知本題是一個(gè)超幾何分步,隨機(jī)變量X表示所選3人中女生的人數(shù),
X可能取的值為0,1,2,且$P({X=k})=\frac{{C_2^kC_4^{3-k}}}{C_6^3},k=0,1,2$,
P(X=0)=$\frac{{C}_{2}^{0}{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
P(X=1)=$\frac{{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$=$\frac{3}{5}$,
P(X=2)=$\frac{{C}_{2}^{2}{C}_{4}^{1}}{{C}_{6}^{3}}$=$\frac{1}{5}$,
X的分布列為:
X | 0 | 1 | 2 |
P | $\frac{1}{5}$ | $\frac{3}{5}$ | $\frac{1}{5}$ |
點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意超幾何分布的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 共線向量的方向相同 | B. | 零向量是$\overrightarrow{0}$ | ||
C. | 長(zhǎng)度相等的向量叫做相等向量 | D. | 共線向量是在一條直線上的向量 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4π | B. | 5π | C. | 6π | D. | 7π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b | B. | a>b | ||
C. | a≤b | D. | a,b的大小關(guān)系無(wú)法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 棱臺(tái)的側(cè)面一定不會(huì)是平行四邊形 | |
B. | 棱錐的側(cè)面只能是三角形 | |
C. | 由四個(gè)面圍成的封閉圖形只能是三棱錐 | |
D. | 棱錐被平面截成的兩部分不可能都是棱錐 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com