17.在△ABC中,sinA<sin B,則(  )
A.a<bB.a>b
C.a≤bD.a,b的大小關(guān)系無(wú)法確定

分析 利用正弦定理即可得出.

解答 解:∵0<sinA<sin B,又$\frac{a}{sinA}=\frac{sinB}$,
∴a<b.
故選:A.

點(diǎn)評(píng) 本題考查了正弦定理、三角形的邊角關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若$\overrightarrow{i}$=(1,0),$\overrightarrow{j}$=(0,1),則|$\overrightarrow{i}$-2$\overrightarrow{j}$|=( 。
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.我們把一系列向量$\overrightarrow{a_i}$(i=1,2,3,…,n)按次序排成一列,稱之為向量列,記作$\left\{{\overrightarrow{a{\;}_n}}\right\}$,已知向量列$\left\{{\overrightarrow{a{\;}_n}}\right\}$滿足:$\overrightarrow{a_1}$=(1,1),$\overrightarrow{a_n}$=(xn,yn)=$\frac{1}{2}$(xn-1-yn-1,xn-1+yn-1)(n≥2).
(1)證明:數(shù)列$\left\{{|{\overrightarrow{a_n}}|}\right\}$是等比數(shù)列;
(2)設(shè)θn表示向量$\overrightarrow{a_n}$與$\overrightarrow{{a_{n-1}}}$間的夾角,若bn=$\frac{n^2}{π}{θ_n}$,對(duì)于任意正整數(shù)n,不等式$\sqrt{\frac{1}{{{b_{n+1}}}}}$+$\sqrt{\frac{1}{{{b_{n+2}}}}}$+…+$\sqrt{\frac{1}{{{b_{2n}}}}}$>a(a+2)恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.從4名男生和2 名女生中任選3人參加演講比賽,設(shè)隨機(jī)變量X表示所選3人中女生的人數(shù).
(1)求X的分布列(結(jié)果用數(shù)字表示);
(2)求所選3個(gè)中最多有1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.對(duì)于?x∈R,不等式|x-2|+|x+4|≥m2-5m恒成立,則實(shí)數(shù)m的取值范圍是-1≤m≤6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=x2-4|x|+3,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.函數(shù)f(x)=mx+k(x∈R)的圖象與y軸的交點(diǎn)為(0,2),且過(guò)點(diǎn)(1,4),則m=2,k=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.化簡(jiǎn)(下列字母的取值范圍均使根式有意義):
(1)a•$\sqrt{-\frac{1}{a}}$;(2)$\sqrt{-{a}^{3}^{2}}$;(3)$\sqrt{\frac{{y}^{3}}{12{x}^{3}}}$(x<0);(4)$\sqrt{(a-3)^{2}}$+$\sqrt{(a+4)^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知logxa=2,logxb=3,logxc=6,求logabcx.

查看答案和解析>>

同步練習(xí)冊(cè)答案