精英家教網 > 高中數學 > 題目詳情

【題目】用斜二測畫法畫出下列水平放置的正五邊形和四邊形的直觀圖.

【答案】解:(1)作出坐標系x′O′y′,使∠x′O′y′=45°,
連結EC交y軸為F,
在x′軸上作線段A′B′=AB,
則y′軸上分別作線段O′D′=OD,O′F′=OF,
過F′作線段E′C′=EC,且E′C′∥O′x′,
連結A′B′C′D′E′,即為正五邊形的直觀圖.
(2)作出坐標系x′O′y′,使∠x′O′y′=45°,
在x′軸上作線段O′C′=OC,
則y′軸上分別作線段O′A′=OA,
過A′作線段A′B′=AB,且A′B′∥O′x′,
連結A′B′C′O′,即為四邊形的直觀圖.

【解析】根據斜二測畫法的原則即可得到結論.
【考點精析】認真審題,首先需要了解斜二測法畫直觀圖(斜二測畫法的步驟:(1)平行于坐標軸的線依然平行于坐標軸;(2)平行于y軸的線長度變半,平行于x,z軸的線長度不變;(3)畫法要寫好).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某商場擬對某商品進行促銷,現有兩種方案供選擇,每種促銷方案都需分兩個月實施,且每種方案中第一個月與第二個月的銷售相互獨立.根據以往促銷的統(tǒng)計數據,若實施方案1,預計第一個月的銷量是促銷前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個月的銷量是第一個月的1.4倍和1.6倍的概率都是0.5;若實施方案2,預計第一個月的銷量是促銷前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個月的銷量是第一個月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實施方案的第二個月的銷量是促銷前銷量的倍數.

(Ⅰ)求, 的分布列;

(Ⅱ)不管實施哪種方案, 與第二個月的利潤之間的關系如下表,試比較哪種方案第二個月的利潤更大.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,梯形中, , , , 分別為的中點,對于常數,在梯形的四條邊上恰好有8個不同的點,使得成立,則實數的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點A(3,3)、B(5,2)到直線l的距離相等,且直線l經過兩直線l1:3x﹣y﹣1=0和l2:x+y﹣3=0的交點,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖⑴、⑵、⑶、⑷為四個幾何體的三視圖,根據三視圖可以判斷這四個幾何體依次分別為

A.三棱臺、三棱柱、圓錐、圓臺
B.三棱臺、三棱錐、圓錐、圓臺
C.三棱柱、正四棱錐、圓錐、圓臺
D.三棱柱、三棱臺、圓錐、圓臺

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過點A(a,a)可作圓x2+y2﹣2ax+a2+2a﹣3=0的兩條切線,則實數a的取值范圍為(
A.a<﹣3或a>1
B.a<
C.﹣3<a<1 或a>
D.a<﹣3或1<a<

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設Sn是數列{an}的前n項和,已知a1=2,an+1=Sn+2.
(1)求數列{an}的通項公式.
(2)令bn=(2n﹣1)an , 求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查.下面是根據調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據此資料,你是否認為“體育迷”與性別有關?

(2)將上述調查所得到的頻率視為概率.現在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數為.若每次抽取的結果是相互獨立的,求分布列,期望和方差.

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設等差數列{an}滿足a3=5,a10=﹣9.
(1)求{an}的通項公式;
(2)求{an}的前n項和Sn及使得Sn最大的序號n的值.

查看答案和解析>>

同步練習冊答案