精英家教網 > 高中數學 > 題目詳情
5.已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小正周期是$\frac{2π}{3}$,最小值是-2,且圖象經過點($\frac{5π}{9}$,0),則f(0)=$\sqrt{3}$.

分析 由函數的最值求出A,由周期求出ω,由特殊點的坐標求出φ的值,可得函數的解析式,從而求得f(0)的值.

解答 解:由函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最小正周期是$\frac{2π}{3}$,最小值是-2,
可得$\frac{2π}{ω}$=$\frac{2π}{3}$,即ω=3,A=2.
再根據f(x)的圖象經過點($\frac{5π}{9}$,0),可得2sin(3×$\frac{5π}{9}$+φ)=0,可得sin(-$\frac{π}{3}$+φ)=0,∴φ=$\frac{π}{3}$,f(x)=2sin(3x+$\frac{π}{3}$),
故f(0)=2sin$\frac{π}{3}$=$\sqrt{3}$,
故答案為:$\sqrt{3}$.

點評 本題主要考查由函數y=Asin(ωx+φ)的部分圖象求解析式,由函數的最值求出A,由周期求出ω,由特殊點的坐標求出φ的值,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

15.總體(x,y)的一組樣本數據為:
x1234
y3354
(1)若x,y線性相關,求回歸直線方程;
(2)當x=6時,估計y的值.
附:回歸直線方程$\hat y$=$\hat b$x+$\hat a$,其中$\hat a$=$\overline{y}$-$\hat b$$\overline{x}$,$\hat b$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{{\sum_{y=1}^{n}x}_{i}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.函數f(x)=cos2x在點($\frac{π}{4},\frac{1}{2}}$)處的切線方程為x+y-$\frac{1}{2}$-$\frac{π}{4}$=0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

13.分別求滿足下列條件的直線方程.
(Ⅰ)過點(0,1),且平行于l1:4x+2y-1=0的直線;
(Ⅱ)與l2:x+y+1=0垂直,且過點P(-1,0)的直線.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.在($\frac{x}{2}$-$\frac{1}{\root{3}{x}}$)n的展開式中,只有第7項的二項式系數最大,則展開式常數項是(  )
A.$\frac{55}{2}$B.-$\frac{55}{2}$C.-28D.28

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.函數f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f($\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.π

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知向量$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow$=($\sqrt{3}$sinx,sinx),x∈R設函數f(x)=$\overrightarrow{a}•\overrightarrow$-$\frac{1}{2}$
(1)求函數f(x)的最小正周期;
(2)求函數f(x)在[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知集合A={x|-2≤x≤2},集合B=x|x-1>0},則集合A∩(∁RB)=(  )
A.{x|1<x≤2}B.{x|-2≤x<1}C.{x|-2≤x≤1}D.{x|-2≤x≤2}

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.已知函數f(x)=$\left\{{\begin{array}{l}{a+lnx,x>0}\\{g(x)-x,x<0}\end{array}}$為奇函數,且g(-e)=0,則a=-1-e.

查看答案和解析>>

同步練習冊答案