【題目】已知函數(shù)f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x﹣ )(a>0,x>1).
(1)證明函數(shù)f(x)為偶函數(shù);
(2)若函數(shù)f(x)﹣g(x)只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
【答案】
(1)證明:f(x)的定義域是R,
f(﹣x)=log2(4﹣x+1)+x
=log2 +x
=log2(4x+1)﹣log222x+x
=log2(4x+1)﹣2x+x
=f(x),
故f(x)在R是偶函數(shù)
(2)解:由題意:函數(shù)f(x)﹣g(x)只有一個(gè)零點(diǎn),即f(x)=g(x)只有一個(gè)零點(diǎn),
可得:log2(4x+1)﹣x=log2a+log2(2x﹣ )(a>0)
整理得: .
即:
令2x=t
∵x>1,
∴t>2
轉(zhuǎn)化為f(t)= (t>2)與x軸的交點(diǎn)問題.
當(dāng)a﹣1=0,即a=1時(shí),f(t)=
∵t>2,∴f(t)恒小于0,與x軸沒有交點(diǎn).
當(dāng)a﹣1>0,即a>1時(shí),f(t)與x軸有一個(gè)交點(diǎn),需那么f(2)<0.
解得: ,
所以: .
當(dāng)a﹣1<0,即0<a<1時(shí),f(t)與x軸有一個(gè)交點(diǎn),需那么f(2)>0,此時(shí)無解.
綜上所得:函數(shù)f(x)﹣g(x)只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍是(1, )
【解析】(1)求解定義域,利用定義進(jìn)行判斷即可.(2)函數(shù)f(x)﹣g(x)只有一個(gè)零點(diǎn),即f(x)=g(x)只有一個(gè)零點(diǎn),化簡計(jì)算,轉(zhuǎn)化成二次方程問題求解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的奇偶性(偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 是奇函數(shù).
(1)求實(shí)數(shù)a的值;
(2)用定義證明函數(shù)f(x)在R上的單調(diào)性;
(3)若對任意的x∈R,不等式f(x2﹣x)+f(2x2﹣k)>0恒成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|y= },B={x|﹣1≤2x﹣1≤0},則(RA)∩B=( )
A.(4,+∞)
B.
C.
D.(1,4]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是橢圓的左、右頂點(diǎn), 為左焦點(diǎn),點(diǎn)是橢圓上異于的任意一點(diǎn),直線與過點(diǎn)且垂直于軸的直線交于點(diǎn),直線于點(diǎn).
(1)求證:直線與直線的斜率之積為定值;
(2)若直線過焦點(diǎn), ,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f(1)=1.
(1)求函數(shù)f(x)的解析式;
(2)判斷并證明f(x)在(﹣1,1)上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=﹣x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是自然對數(shù)的底數(shù), , , , .
(1)設(shè),求的極值;
(2)設(shè),求證:函數(shù)沒有零點(diǎn);
(3)若,設(shè),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】石家莊市為鼓勵(lì)居民節(jié)約用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi),每月用電不超過100度時(shí),按每度0.52元計(jì)算,每月用電量超過100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.6元計(jì)算.
(1)設(shè)月用電x度時(shí),應(yīng)繳電費(fèi)y元,寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)小明家第一季度繳納電費(fèi)情況如表:
月份 | 一月 | 二月 | 三月 | 合計(jì) |
繳費(fèi)金額 | 82元 | 64元 | 46.8元 | 192.8元 |
問小明家第一季度共用電多少度?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線C: 的離心率是 ,其一條準(zhǔn)線方程為x= .
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)雙曲線C的左右焦點(diǎn)分別為A,B,點(diǎn)D為該雙曲線右支上一點(diǎn),直線AD與其左支交于點(diǎn)E,若 =λ ,求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com