【題目】已知橢圓C:的離心率為,橢圓C的四個(gè)頂點(diǎn)圍成的四邊形的面積為.
求橢圓C的方程;
直線l與橢圓C交于,兩個(gè)不同點(diǎn),O為坐標(biāo)原點(diǎn),若的面積為,證明:為定值.
【答案】(1)(2)見解析
【解析】
由離心率為,,,由,解得:,,即可求得橢圓C的方程;
直線l的斜率不存在時(shí),P,Q兩點(diǎn)關(guān)于x軸對(duì)稱,,,由三角形面積公式即可求得和的值,可得的值,當(dāng)直線斜率存在,設(shè)出直線方程代入橢圓方程,利用及韋達(dá)定理求得和的關(guān)系,利用點(diǎn)到直線的距離公式和弦長公式求得的面積,求得m和k的關(guān)系式,即可證明為定值.
解:橢圓C:的焦點(diǎn)在x軸上,離心率為,,
橢圓C的四個(gè)頂點(diǎn)圍成的四邊形的面積為,即,
由,解得:,,
橢圓的標(biāo)準(zhǔn)方程為:;
證明:當(dāng)直線軸時(shí),,的面積,
解得:,,
故.
當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為,,
聯(lián)立可得:,
,即,
由韋達(dá)定理可知,.
.
點(diǎn)O到直線l的距離為
則的面積.
整理得:,滿足,代入
綜上為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知有6名男醫(yī)生,4名女醫(yī)生.
(1)選3名男醫(yī)生,2名女醫(yī)生,讓這5名醫(yī)生到5個(gè)不同地區(qū)去巡回醫(yī)療,一個(gè)地區(qū)去一名教師,共有多少種分派方法?
(2)把10名醫(yī)生分成兩組,每組5人且每組都要有女醫(yī)生,共有多少種不同的分法?若將這兩組醫(yī)生分派到兩地去,又有多少種分派方法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn).若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說:“我羊所吃的禾苗只有馬的一半.”馬主人說:“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),對(duì)稱軸為軸,焦點(diǎn)為,拋物線上一點(diǎn)的橫坐標(biāo)為,且.
(Ⅰ)求此拋物線的方程;
(Ⅱ)過點(diǎn)做直線交拋物線于兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù),若存在,使成立,則稱為的不動(dòng)點(diǎn).已知函數(shù) .
(1)當(dāng),時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍;
(3)在(2)的條件下,若的兩個(gè)不動(dòng)點(diǎn)為,,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱臺(tái)ABCDEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.
(1)求證:BF⊥平面ACFD;
(2)求二面角B-AD-F的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國電子商務(wù)蓬勃發(fā)展,有關(guān)部門推出了針對(duì)網(wǎng)購平臺(tái)的商品和服務(wù)的評(píng)價(jià)系統(tǒng),從該系統(tǒng)中隨機(jī)選出100名交易者,并對(duì)其交易評(píng)價(jià)進(jìn)行了統(tǒng)計(jì),網(wǎng)購者對(duì)商品的滿意率為0.6,對(duì)服務(wù)的滿意率為0.75,其中對(duì)商品和服務(wù)都滿意的有40人.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有的把握認(rèn)為“網(wǎng)購者對(duì)服務(wù)滿意與對(duì)商品滿意之間有關(guān)”?
對(duì)服務(wù)滿意 | 對(duì)服務(wù)不滿意 | 合計(jì) | |
對(duì)商品滿意 | |||
對(duì)商品不滿意 | |||
合計(jì) |
(2)若對(duì)商品和服務(wù)都不滿意者的集合為.已知中有2名男性,現(xiàn)從中任取2人調(diào)查其意見.求取到的2人恰好是一男一女的概率.
附: (其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:,直線:.
(1)求直線所過定點(diǎn)的坐標(biāo);
(2)求直線被圓所截得的弦長最短時(shí)的值;
(3)已知點(diǎn),在直線(為圓心)上存在定點(diǎn)(異于點(diǎn)),滿足:對(duì)于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo)及該常數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com