有對稱中心的曲線叫做有心曲線,過有心曲線中心的弦叫做有心曲線的直徑。定理:如果圓上異于一條直徑兩個(gè)端點(diǎn)的任意一點(diǎn)與這條直徑兩個(gè)端點(diǎn)連線的斜率存在,則這兩條直線的斜率乘積為定值-1。寫出該定理在有心曲線中的推廣           。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知橢圓上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到右準(zhǔn)線的距離等于短半軸的長.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 過點(diǎn)(,)的動(dòng)直線交橢圓、兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得無論如何轉(zhuǎn)動(dòng),以為直徑的圓恒過定點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
如圖,已知兩定點(diǎn)和定直線,動(dòng)點(diǎn)在直線上的射影為,且

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程并畫草圖;
(Ⅱ)是否存在過點(diǎn)的直線,使得直線與曲線相交于兩點(diǎn),且△的面積等于?如果存在,請求出直線的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)定點(diǎn),,動(dòng)點(diǎn)滿足條件,則動(dòng)點(diǎn)的軌跡是( 。.
A.橢圓B.線段C.不存在D.橢圓或線段或不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

、已知直線.
(1) 當(dāng)時(shí),求的交點(diǎn);
(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知a、b、c成等差數(shù)列,則直線被曲線截得的弦長的最小值為                        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線上一點(diǎn)到點(diǎn)的距離是20,則點(diǎn)到點(diǎn)的距離是 --------

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

P為拋物線上一動(dòng)點(diǎn),則點(diǎn)P到y(tǒng)軸距離和到點(diǎn)A距離之和的最小值等于     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線的焦點(diǎn)與橢圓的焦點(diǎn)重合,則的值為    

查看答案和解析>>

同步練習(xí)冊答案