13.已知向量$\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,2),且$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{a}$垂直,則實(shí)數(shù)λ等于( 。
A.-1B.$\frac{1}{2}$C.-$\frac{1}{2}$D.1

分析 利用向量垂直,數(shù)量積為0,得到關(guān)于λ的方程解之.

解答 解:因?yàn)橄蛄?\overrightarrow{a}$=(1,0),$\overrightarrow$=(2,2),所以$\overrightarrow{a}$+λ$\overrightarrow$=(1+2λ,2λ),且$\overrightarrow{a}$+λ$\overrightarrow$與$\overrightarrow{a}$垂直,
所以($\overrightarrow{a}$+λ$\overrightarrow$)•$\overrightarrow{a}$=0即1+2λ=0,解得$λ=-\frac{1}{2}$;
故選:C.

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)運(yùn)算以及向量垂直的性質(zhì)運(yùn)用;屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.用反證法證明命題時(shí),對(duì)結(jié)論“自然數(shù)a,b,c中至多有一個(gè)奇數(shù)”的反設(shè)是( 。
A.自然數(shù)a,b,c中至少有兩個(gè)奇數(shù)
B.自然數(shù)a,b,c中至少有兩個(gè)偶數(shù)或都是奇數(shù)
C.自然數(shù)a,b,c都是偶數(shù)
D.自然數(shù)a,b,c都是奇數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)(1-i)z=2+3i(i為虛數(shù)單位),則z的虛部為( 。
A.$\frac{5}{2}$B.$\frac{5}{2}$iC.-$\frac{5}{2}$iD.-$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=Asin(?x+φ)(A>0,?>0,|φ|<$\frac{π}{2}$)滿足f(-1)=0,則(  )
A.f(x-1)一定是偶函數(shù)B.f(x-1)一定是奇函數(shù)
C.f(x+1)一定是偶函數(shù)D.f(x+1)一定是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列能保證a⊥∂(a,b,c為直線,∂為平面)的條件是(  )
A.b,c?∂.a(chǎn)⊥b,a⊥cB.b,c?∂.a(chǎn)∥b,a∥c
C.b,c?∂.b∩c=A,a⊥b,a⊥cD.b,c?∂.b∥c,a⊥b,a⊥c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知離心率為$\frac{1}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,A是橢圓C的左頂點(diǎn),且滿足|AF1|+|AF2|=4.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若斜率為k的直線交橢圓C于點(diǎn)M,N兩點(diǎn)(異于A點(diǎn)),且滿足AM⊥AN,問直線MN是否恒過定點(diǎn)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=ax2+bx+c(a<0),若f(x-2)是偶函數(shù),能否比較f(-$\frac{\sqrt{3}}{2}$),f(-$\frac{π}{3}$),f(-1)的大小?若能,將這三個(gè)數(shù)按從小到大的順序排列;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知集合A={x||x-1|≤1},B={x|y=$\sqrt{1-3x}$},則A∩B=[0,$\frac{1}{3}$],(∁RA)∪B=(-∞,$\frac{1}{3}$]∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=-x2-4x+1的最大值和單調(diào)增區(qū)間分別為( 。
A.5,(-2,+∞)B.-5,(-2,+∞)C.5,(-∞,2)D.5,(-∞,-2)

查看答案和解析>>

同步練習(xí)冊(cè)答案