【題目】如圖,三棱臺的底面是正三角形,平面平面,.
(1)求證:;
(2)若,求直線與平面所成角的正弦值.
【答案】(Ⅰ)見證明;(Ⅱ)
【解析】
(Ⅰ)取的中點為,連結,易證四邊形為平行四邊形,即,由于,為的中點,可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標系,求出平面的一個法向量為,設與平面所成角為,則,即可得到答案。
解:(Ⅰ)取的中點為,連結.
由是三棱臺得,平面平面,從而.
∵,∴,
∴四邊形為平行四邊形,∴.
∵,為的中點,
∴,∴.
∵平面平面,且交線為,平面,
∴平面,而平面,
∴.
(Ⅱ)連結.
由是正三角形,且為中點,則.
由(Ⅰ)知,平面,,
∴,,
∴,,兩兩垂直.
以,,分別為,,軸,建立如圖所示的空間直角坐標系.
設,則,,,,
∴,,.
設平面的一個法向量為.
由可得,.
令,則,,∴.
設與平面所成角為,則.
科目:高中數學 來源: 題型:
【題目】給定橢圓,稱圓心在坐標原點,半徑為的圓是橢圓的“伴橢圓”,若橢圓右焦點坐標為,且過點.
(1)求橢圓的“伴橢圓”方程;
(2)在橢圓的“伴橢圓”上取一點,過該點作橢圓的兩條切線、,證明:兩線垂直;
(3)在雙曲線上找一點作橢圓的兩條切線,分別交于切點、使得,求滿足條件的所有點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在等腰梯形中,,,,四邊形為矩形,平面平面,.
(1)求證:平面;
(2)點在線段上運動,設平面與平面所成二面角的平面角為(),試求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合是實數集的子集,如果正實數滿足:對任意都存在使得則稱為集合的一個“跨度”,已知三個命題:
(1)若為集合的“跨度”,則也是集合的“跨度”;
(2)集合的“跨度”的最大值是4;
(3)是集合的“跨度”.
這三個命題中正確的個數是()
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】張軍自主創(chuàng)業(yè),在網上經營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價格依次為120元/千克、80元/千克、70元/千克、40元千克,為增加銷量,張軍對這四種干果進行促銷:一次購買干果的總價達到150元,顧客就少付x(2x∈Z)元.每筆訂單顧客網上支付成功后,張軍會得到支付款的80%.
①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;
②在促銷活動中,為保證張軍每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區(qū)2007年至2013年農村居民家庭純收入y(單位:千元)的數據如下表:
年份 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2007年至2013年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2015年農村居民家庭人均純收入.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線的參數方程為(為參數)。在極坐標系(與直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,圓的極坐標方程為。
(1)求直線的普通方程和圓的直角坐標方程;
(2)設圓與直線交于,兩點,若點的坐標為,求。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩個無窮數列分別滿足,,
其中,設數列的前項和分別為,
(1)若數列都為遞增數列,求數列的通項公式;
(2)若數列滿足:存在唯一的正整數(),使得,稱數列為“墜點數列”
①若數列為“5墜點數列”,求;
②若數列為“墜點數列”,數列為“墜點數列”,是否存在正整數,使得,若存在,求的最大值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com