【題目】在直三棱柱中,底面是直角三角形,,為側(cè)棱的中點.

(1)求異面直線、所成角的余弦值;

(2)求二面角的平面角的余弦值.

【答案】(1);(2).

【解析】

試題分析:建立空間直角坐標系,由題意寫出相關點的坐標;(1)求出直線所在的方向向量,直接計算即可;(2)求出平面與平面的法向量,計算即可.

試題解析: (1)如圖所示,以C為原點,CA、CB、CC1為坐標軸,建立空間直角坐標系C-xyz

則C(0,0,0),A(2,0,0),B(0,2,0),C1(0,0,2),B1(0,2,2),D(2,0,1).

所以,

所以.即異面直線DC1與B1C所成角的余弦值為.

(2)因為,,,所以,,所以為平面ACC1A1的一個法向量。

因為,,設平面B1DC1的一個法向量為n,n(x,y,z).

令x=1,則y=2,z=-2,n=(1,2,-2).

所以所以二面角B1DCC1的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,圓F和拋物線,過F的直線與拋物線和圓依次交于AB、C、D四點,求的值是( )

A.1B.2C.3D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱臺的底面是正三角形,平面平面,.

(1)求證:

(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為自然數(shù)1、2、34的一個全排列,且滿足,則這樣的排列有_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的是( )

A. ”是“”成立的充分不必要條件

B. 命題,則

C. 為了了解800名學生對學校某項教改試驗的意見,用系統(tǒng)抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40

D. 已知回歸直線的斜率的估計值為1.23,樣本點的中心為,則回歸直線方程為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,某市為促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的垃圾箱.為調(diào)查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該市三類垃圾箱中總計1000t生活垃圾.經(jīng)分揀以后數(shù)據(jù)統(tǒng)計如下表(單位:):根據(jù)樣本估計本市生活垃圾投放情況,下列說法錯誤的是(

廚余垃圾

可回收物

其他垃圾

廚余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

A.廚余垃圾投放正確的概率為

B.居民生活垃圾投放錯誤的概率為

C.該市三類垃圾箱中投放正確的概率最高的是可回收物

D.廚余垃圾在廚余垃圾箱、可回收物箱、其他垃圾箱的投放量的方差為20000

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù),若函數(shù)的圖像上有且只有兩對點關于軸對稱,則的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為定義在實數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個實根),稱為的特征根.

(1)討論函數(shù)的奇偶性,并說明理由;

(2)已知為給定實數(shù),求的表達式;

(3)把函數(shù),的最大值記作,最小值記作,研究函數(shù),的單調(diào)性,令,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某商場2018年洗衣機、電視機和電冰箱三種電器各季度銷量的百分比堆積圖(例如:第3季度內(nèi),洗衣機銷量約占,電視機銷量約占,電冰箱銷量約占).根據(jù)該圖,以下結(jié)論中一定正確的是( )

A. 電視機銷量最大的是第4季度

B. 電冰箱銷量最小的是第4季度

C. 電視機的全年銷量最大

D. 電冰箱的全年銷量最大

查看答案和解析>>

同步練習冊答案