19.已知向量$\overrightarrow a$=(1,m),$\overrightarrow b$=(2,m-3),且$\overrightarrow a⊥\overrightarrow b$,則實(shí)數(shù)m的值為1或2.

分析 令$\overrightarrow{a}•\overrightarrow$=0列方程解出.

解答 解:∵$\overrightarrow{a}⊥\overrightarrow$,∴$\overrightarrow{a}•\overrightarrow$=0,
∴2+m(m-3)=0,解得m=1或m=2.
故答案為:1或2.

點(diǎn)評 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知m∈(0,1),令a=logm2,b=m2,c=2m,那么a,b,c之間的大小關(guān)系為a<b<c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,圓M的圓心在拋物線上且經(jīng)過坐標(biāo)原點(diǎn)O和點(diǎn)F,若圓M的半徑為3,則拋物線方程為( 。
A.y2=4xB.y2=6xC.y2=8xD.y2=16x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在某次綜合素質(zhì)測試中,共設(shè)有40個(gè)考室,每個(gè)考室30名考生.在考試結(jié)束后,統(tǒng)計(jì)了他們的成績,得到如圖所示的頻率分布直方圖.這40個(gè)考生成績的眾數(shù)77.5,中位數(shù)77.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+2ax+3,x∈[-2,2]
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的最大值和最小值;
(2)記f(x)在區(qū)間[-2,2]上的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合M={x|x(x-8)<0,x∈R},N={1,-2,3,-4,5,-6,7,-8},則M∩N=( 。
A.(0,8)B.{1,-2,3,-4,5,-6,7,-8}
C.{-2,-4,-6,-8}D.{1,3,5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列命題中不正確的個(gè)數(shù)是(  )
①小于90°的角是銳角;
②終邊不同的角的同名三角函數(shù)值不等;
③若sinα>0,則α是第一、二象限角;
④若α是第二象限的角,且P(x,y)是其終邊上的一點(diǎn),則cosα=$\frac{-x}{{\sqrt{{x^2}+{y^2}}}}$.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{{{x^2}+2x+a}}{x}$.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)在區(qū)間[2,+∞)上的最小值;
(2)若對任意x∈[1,+∞),$x•f(x)>\frac{2a+6}{|a|}$恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.過△ABC所在平面α外一點(diǎn)P作PO⊥α,垂足為O,連接PA,PB,PC.
①若PA=PB=PC,則點(diǎn)O是P的外心;
②若點(diǎn)P到△ABC三邊所在直線的距離都相等,則點(diǎn)O是△ABC的內(nèi)心;
③若PA⊥PB,PB⊥PC,PA⊥PC,則點(diǎn)O是△ABC的垂心;
④若PA,PB,PC與平面α所成的角都相等,則點(diǎn)O是△ABC的外心;
上面選項(xiàng)中正確的序號是①③④.

查看答案和解析>>

同步練習(xí)冊答案