已知變量x,y滿足約束條件
x+y≥1
y≤4
x-y≤1
,若z=kx+y的最大值為5,則實數(shù)k=
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=kx+y得y=-kx+z,
∴直線的截距最大,對應(yīng)的z也取得最大值,
即平面區(qū)域在直線y=-kx+z的下方,
若-k<0,平移直線y=-kx+z,由圖象可知當(dāng)直線y=-kx+z經(jīng)過點B時,直線y=-kx+z的截距最大,此時z最大為5,
即kx+y=5
y=4
y=x-1
,解得
x=5
y=4

即B(5,4),
此時5k+4=5,解得k=
1
5
,
若-k>0,平移直線y=-kx+z,由圖象可知當(dāng)直線y=-kx+z經(jīng)過點A時,直線y=-kx+z的截距最大,此時z最大為5,
即kx+y=5
y=4
y=-x+1
,解得
x=-3
y=4

即A(-3,4),
此時-3k+4=5,解得k=-
1
3

故答案為:-
1
3
1
5
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)求228,1995的最大公約數(shù)是
 
;
(2)把11102(3)化成十進制數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)的漸近線與圓(x-2)2+y2=1相交,則雙曲線的離心率的取值范圍是(  )
A、(1,2)
B、(
2
3
3
,+∞)
C、(1,
2
3
3
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一組數(shù)據(jù)1,2,m,4的平均數(shù)是3,則這組數(shù)據(jù)的方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某餐館一天中要購買A,B兩種蔬菜,A、B蔬菜每斤的單價分別為2元和3 元.根據(jù)需要,A蔬菜至少要買6斤,B蔬菜至少要買4斤,而且一天中購買這兩種蔬菜的總費用不能超過60元.
(1)寫出一天中A蔬菜購買的斤數(shù)x和B蔬菜購買的斤數(shù)y之間的不等式組;
(2)在下面給定的坐標(biāo)系中畫出(1)中不等式組表示的平面區(qū)域(用陰影表
示),并求z=x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,an>0,q≠1,且a2、
1
2
a3
、a1成等差數(shù)列,則
a14+a17
a12+a15
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足條件:a1=
1
2
,an+1=
1+an
1-an
(n∈N*)
,則對n≤20的正整數(shù),an+an+1=
1
6
的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從12個同類產(chǎn)品(其中10個正品,2個次品)中任意抽取3個產(chǎn)品的必然事件是( 。
A、3個都是正品
B、至少有一個是次品
C、至少有一個是正品
D、3個都是次品

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:
廣告費用x(萬元)4235
銷售額y(萬元)44253754
根據(jù)上表可得回歸方程
y
=
b
x+
a
中的
b
為9.4,據(jù)此模型預(yù)報廣告費用為6萬元時銷售額為(  )
A、61.5萬元
B、62.5萬元
C、63.5萬元
D、65.0萬元

查看答案和解析>>

同步練習(xí)冊答案