:如圖,在平面直角坐標(biāo)系xoy中,拋物線yx2x-10與x軸的交點(diǎn)為A,與y軸的交點(diǎn)為點(diǎn)B,過點(diǎn)Bx軸的平行線BC,交拋物線于點(diǎn)C,連結(jié)AC.現(xiàn)有兩動(dòng)點(diǎn)P,Q分別從O,C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒4個(gè)單位的速度沿OA向終點(diǎn)A移動(dòng),點(diǎn)Q以每秒1個(gè)單位的速度沿CB向點(diǎn)B移動(dòng),點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也同時(shí)停止運(yùn)動(dòng).線段OCPQ相交于點(diǎn)D,過點(diǎn)DDEOA,交CA于點(diǎn)E,射線QEx軸于點(diǎn)F.設(shè)動(dòng)點(diǎn)P,Q移動(dòng)的時(shí)間為t(單位:秒)
(1)求AB,C三點(diǎn)的坐標(biāo)和拋物線的頂點(diǎn)坐標(biāo);
(2)當(dāng)t為何值時(shí),四邊形PQCA為平行四邊形?請寫出計(jì)算過程;
(3)當(dāng)t∈(0,)時(shí),△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
(4)當(dāng)t為何值時(shí),△PQF為等腰三角形?請寫出解答過程.
:略
:(1)在yx2x-10中,令y=0,得x2-8x-180=0.
解得x=-10或x=18,∴A(18,0).····················································· 1分
yx2x-10中,令x=0,得y=-10.
B(0,-10).································· 2分
BCx軸,∴點(diǎn)C的縱坐標(biāo)為-10.
由-10=x2x-10得x=0或x=8.
C(8,-10).·································· 3分
yx2x-10=(x-4)2
∴拋物線的頂點(diǎn)坐標(biāo)為(4,-).    4分
(2)若四邊形PQCA為平行四邊形,由于QCPA,故只要QCPA即可.
QCt,PA=18-4t,∴t=18-4t
解得t.·························································································· 6分
(3)設(shè)點(diǎn)P運(yùn)動(dòng)了t秒,則OP=4tQCt,且0<t<4.5,說明點(diǎn)P在線段OA上,且不與點(diǎn)OA重合.
QCOP,    ∴
同理QCAF,∴,即
AF=4tOP
PFPAAFPAOP=18.································································· 8分
SPQFPF·OB×18×10=90
∴△PQF的面積總為定值90.································································· 9分
(4)設(shè)點(diǎn)P運(yùn)動(dòng)了t秒,則P(4t,0),F(18+4t,0),Q(8-t,-10) t(0,4.5).
PQ2=(4t-8+t)2+102=(5t-8)2+100
FQ2=(18+4t-8+t)2+102=(5t+10)2+100.
①若FPFQ,則182=(5t+10)2+100.
即25(t+2)2=224,(t+2)2
∵0≤t≤4.5,∴2≤t+2≤6.5,∴t+2=
t-2.··················································································· 11分
②若QPQF,則(5t-8)2+100=(5t+10)2+100.
即(5t-8)2=(5t+10)2,無0≤t≤4.5的t滿足.·································· 12分
③若PQPF,則(5t-8)2+100=182
即(5t-8)2=224,由于≈15,又0≤5t≤22.5,
∴-8≤5t-8≤14.5,而14.52=()2<224.
故無0≤t≤4.5的t滿足此方程.·························································· 13分
注:也可解出t<0或t>4.5均不合題意,
故無0≤t≤4.5的t滿足此方程.
綜上所述,當(dāng)t-2時(shí),△PQF為等腰三角形.·························· 14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)相同,離心率為,則此橢圓的方程為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知定點(diǎn),動(dòng)點(diǎn)A滿足|AE|=4,線段AF的垂直平分線交AE于點(diǎn)M。
(1)求點(diǎn)M的軌跡C1的方程;
(2)拋物線C2與C1在第一象限交于點(diǎn)P,直線PF交拋物線于另一個(gè)點(diǎn)Q,求拋物線的POQ弧上的點(diǎn)R到直線PQ的距離的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)
設(shè),點(diǎn)在軸的負(fù)半軸上,點(diǎn)軸上,且
(1)當(dāng)點(diǎn)軸上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)若,是否存在垂直軸的直線被以為直徑的圓截得的弦長恒為定值?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線,點(diǎn)A(0,-2)及點(diǎn)B(3,a),從點(diǎn)A觀察點(diǎn)B,要使視線不被C擋住,則實(shí)數(shù)a的取值范圍是              
A.(-∞,10)B.(10,+∞)C.(-∞,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線焦點(diǎn)為F,準(zhǔn)線為l,經(jīng)過F的直線與拋物線交于A、B兩點(diǎn),交準(zhǔn)線于C點(diǎn),點(diǎn)A在x軸上方,AK⊥l,垂足為K,若|BC|=2|BF|,且|AF|=4,則△AKF的面積是                           (   )
A.4                        B.                  C.                  D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)到準(zhǔn)線的距離為(   )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的準(zhǔn)線與圓相切,則的值為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點(diǎn)坐標(biāo)是        

查看答案和解析>>

同步練習(xí)冊答案