【題目】已知正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項(xiàng)am , an使得 =4a1 , 則 + 的最小值為(
A.
B.
C.
D.不存在

【答案】A
【解析】解:設(shè)數(shù)列{an}的首項(xiàng)為a1 , 公比為q,則由a7=a6+2a5得:
;
∴q2﹣q﹣2=0;
∵an>0;
∴解得q=2;
∴由 得: ;
∴2m+n2=24
∴m+n﹣2=4,m+n=6;

= ,即n=2m時(shí)取“=”;
的最小值為
故選:A.
{an}為等比數(shù)列,可設(shè)首項(xiàng)為a1 , 公比為q,從而由a7=a6+2a5可以得出公比q=2,而由 可以得出m+n=6,從而得到 ,從而便得到 ,這樣可以看出,根據(jù)基本不等式即可得出 的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:sinθ=ρcos2θ,過(guò)點(diǎn)M(﹣1,2)的直線l: (t為參數(shù))與曲線C相交于A、B兩點(diǎn).求:
(1)線段AB的長(zhǎng)度;
(2)點(diǎn)M(﹣1,2)到A、B兩點(diǎn)的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)棱錐的側(cè)棱長(zhǎng)都相等,那么這個(gè)棱錐(
A.一定是正棱錐
B.一定不是正棱錐
C.是底面為圓內(nèi)接多邊形的棱錐
D.是底面為圓外切多邊形的棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的中心在原點(diǎn),離心率等于 ,它的一個(gè)短軸端點(diǎn)恰好是拋物線x2=8 y的焦點(diǎn).
(1)求橢圓C的方程;
(2)已知P(2,m)、Q(2,﹣m)(m>0)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn),
①若直線AB的斜率為 ,求四邊形APBQ面積的最大值;
②當(dāng)A、B運(yùn)動(dòng)時(shí),滿足∠APQ=∠BPQ,試問(wèn)直線AB的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2若選取的是12月1日12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+a;

3若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?

(注:)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;

(2)當(dāng)時(shí),設(shè)函數(shù).若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若兩條異面直線所成的角為90°,則稱(chēng)這對(duì)異面直線為“理想異面直線對(duì)”,在連接正方體各頂點(diǎn)的所有直線中,“理想異面直線對(duì)”的對(duì)數(shù)為(
A.24
B.48
C.72
D.78

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△O′A′B′是一平面圖形的直觀圖,直角邊O′B′=1,則這個(gè)平面圖形的面積是(
A.
B.1
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)設(shè)).對(duì)任意,,,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案