A. | (0,1) | B. | $(0,\frac{1}{2})$ | C. | $[\frac{1}{4},\frac{1}{2})$ | D. | $[\frac{1}{4},1)$ |
分析 由題意可得f(x)在R上為減函數(shù),分別考慮各段的單調(diào)性,可得2a-1<0,0<a<1,注意x=1處的情況,可得2a-1+3a≥a,求交集即可得到所求范圍.
解答 解:對任意x1≠x2都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$<0成立,
即有f(x)在R上為減函數(shù),
當x<1時,y=(2a-1)x+3a,遞減,即有
2a-1<0,解得a<$\frac{1}{2}$,①
當x>1時,y=ax遞減,即有0<a<1,②
由于x∈R,f(x)遞減,即有2a-1+3a≥a,
解得a≥$\frac{1}{4}$,③
由①②③,可得$\frac{1}{4}$≤a<$\frac{1}{2}$.
故選C.
點評 本題考查函數(shù)的單調(diào)性的判斷和運用,考查運算能力,注意定義的運用,屬于中檔題和易錯題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<c<b | B. | a<b<c | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 90° | B. | 60° | C. | 45° | D. | 30 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[{-\sqrt{2},\sqrt{2}}]$ | B. | $[{-1,\sqrt{2}}]$ | C. | $(-1,1]∪\{\sqrt{2}\}$ | D. | $(-1,1]∪\{-\sqrt{2}\}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|0<x<1} | B. | {x|$\frac{1}{2}$<x≤1} | C. | {x|x<1} | D. | ∅ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com