(1)已知tanα=2,計(jì)算
4sinα-2cosα
5cosα+3sinα
的值;
(2)化簡(jiǎn):
sin(π-α)cos(π+α)cos(
2
+α)
cos(3π-α)sin(3π+α)sin(
2
-α)

(3)已知一扇形的圓心角是72°,半徑等于20cm,求扇形的面積.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用,運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專(zhuān)題:三角函數(shù)的求值
分析:(1)將所求的關(guān)系式中的“弦”化“切”,代入計(jì)算即可;
(2)利用誘導(dǎo)公式化簡(jiǎn)即可;
(3)利用扇形的面積公式S=
1
2
lr計(jì)算即可.
解答: 解:(1)∵tanα=2,∴原式=
4tanα-2
5+3tanα
=
6
11
….(4分)
(2)原式=
sinα(-cosα)sinα
(-cosα)(-sinα)cosα
=-tanα….(8分)
(3)設(shè)扇形的弧長(zhǎng)為l,因?yàn)?span id="dl4cpdn" class="MathJye">72°=72×
π
180
=
5
,
所以l=αr=
5
×20=8π(cm)
,所以S=
1
2
lr=
1
2
×8π×20=80π(cm2)
….(12分)
點(diǎn)評(píng):本題考查同角三角函數(shù)基本關(guān)系的運(yùn)用,考查運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值及扇形的面積公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:
|a|
=2,
|b|
=3,
a
b
=-2,則(
b
-
a
2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是公差不等于零的等差數(shù)列,若a1,ak,a2k(k∈N*且k≥2)是公比為q的等比數(shù)列,則公比q的最大值為( 。
A、
3
2
B、
1
2
C、
5
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2b•cosA=c•cosA+a•cosC.
(1)求角A的大小;
(2)若a=
7
,b+c=4,求bc的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中是偶函數(shù)的是( 。
A、y=x3
B、y=cosx
C、y=2x
D、y=lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=
1
3
,求
tan3(-α)cot(2π+α)tan(2π-α)
tan(α-
5
2
π)-tan(π-α)tan(
3
2
π-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將全體正偶數(shù)排成一個(gè)三角數(shù)陣:按照以上排列的規(guī)律,第n行(n≥3)從左向右的第3個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,坐標(biāo)紙上的每個(gè)單元格的邊長(zhǎng)為1,由下往上的六個(gè)點(diǎn):1,2,3,4,5,6的橫、縱坐標(biāo)分別對(duì)應(yīng)數(shù)列{an}(n∈N*)的前12項(xiàng),如下表所示:
a1a2a3a4a5a6a7a8a9a10a11a12
x1y1x2y2x3y3x4y4x5y5x6y6
按如此規(guī)律下去,則a2011+a2012+a2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)F(0,1),直線(xiàn)l:y=-1,P為平面上的動(dòng)點(diǎn),過(guò)點(diǎn)P作直線(xiàn)l的垂線(xiàn),垂足為Q,且
QP
QF
=
FP
FQ

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)M為直線(xiàn)l1:y=-m(m>2)上的任意一點(diǎn),過(guò)點(diǎn)M作軌跡C的兩條切線(xiàn)MA,MB.切點(diǎn)分別為A,B,試探究直線(xiàn)l1上是否存在點(diǎn)M,使得△MAB為直角三角形?若存在,有幾個(gè)這樣的點(diǎn);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案