【題目】如圖在矩形ABCD中,已知AB=3AD,E,F(xiàn)AB的兩個(gè)三等分點(diǎn),AC,DF交于點(diǎn)G.

(1)證明:EGDF;

(2)設(shè)點(diǎn)E關(guān)于直線AC的對(duì)稱點(diǎn)為,問(wèn)點(diǎn)是否在直線DF上,并說(shuō)明理由.

【答案】(1)見(jiàn)解析;(2)點(diǎn)在直線DF

【解析】

試題分析:(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求出直線的方程,利用斜率之間的關(guān)系證明;(2)求出點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為的坐標(biāo),判斷的坐標(biāo)是否滿足的方程即可做出證明.

試題解析:(1)如圖,以AB所在直線為x軸,以AD所在直線為y軸建立直角坐標(biāo)系,

設(shè)AD長(zhǎng)度為1,則可得,,

所以直線AC方程為,

直線DF方程為,

①②解得交點(diǎn)

∴EG斜率,又DF斜率,

,即有EGDF

2)設(shè)點(diǎn),則中點(diǎn)M,

由題意得解得

點(diǎn)在直線DF上.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)復(fù)數(shù)z滿足zi=2﹣i,i為虛數(shù)單位,
p1:|z|=
p2:復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限;
p3:z的共軛復(fù)數(shù)為﹣1+2i,
p4:z的虛部為2i.
其中的真命題為(
A.p1 , p3
B.p2 , p3
C.p1 , p2
D.p1 , p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立平面直角坐標(biāo)系.

(1)求直線的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點(diǎn),直線與曲線交于兩點(diǎn),求的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果的解集為,則對(duì)于函數(shù)應(yīng)有

( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=ax2bxc(a,b,c∈R)滿足:對(duì)任意實(shí)數(shù)x,都有f(x)≥x,且當(dāng)x(1,3)時(shí),有f(x)≤ (x+2)2成立.

(1)證明:f(2)=2;

(2)若f(-2)=0,求f(x)的表達(dá)式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=1-x2+ln(x+1).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若不等式f(x)>x2(k∈N*)在(0,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱柱中,已知AB=2,

E、F分別為、上的點(diǎn),且.

(1)求證:BE⊥平面ACF;

(2)求點(diǎn)E到平面ACF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x﹣1.
(1)求f(x)的函數(shù)解析式,并用分段函數(shù)的形式給出;
(2)作出函數(shù)f(x)的簡(jiǎn)圖;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間及最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案