【題目】中國古代數(shù)學(xué)名草《周髀算經(jīng)》曾記載有“勾股各自乘,并而開方除之”,用符號(hào)表示為,我們把a,b,c叫做勾股數(shù).下列給出幾組勾股數(shù):3,4,5;5,12,13;7,24,25;9,40,41,以此類推,可猜測(cè)第5組股數(shù)的三個(gè)數(shù)依次是________.
【答案】
【解析】
觀察、找出勾股數(shù)的規(guī)律:①以上各組數(shù)均滿足;②最小的數(shù) 是奇數(shù),并且每組勾股數(shù)中最小的數(shù)依次放在一起是連續(xù)的奇數(shù),其余的兩個(gè)數(shù)是連續(xù)的正整數(shù);③最小奇數(shù)的平方等于另兩個(gè)連續(xù)整數(shù)的和,即可得出結(jié)論.
觀察、先找出勾股數(shù)的規(guī)律:①以上各組數(shù)均滿足;②最小的數(shù)是奇數(shù),并且每組勾股數(shù)中最小的數(shù)依次放在一起是連續(xù)的奇數(shù),其余的兩個(gè)數(shù)是連續(xù)的正整數(shù);③最小奇數(shù)的平方等于另兩個(gè)連續(xù)整數(shù)的和,
如
由以上特點(diǎn)我們可知第⑤組勾股數(shù):,
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)若函數(shù)在區(qū)間上有極值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為(t為參數(shù)),直線l2的參數(shù)方程為.設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ) =0,M為l3與C的交點(diǎn),求M的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(已知數(shù)列{}滿足:,為數(shù)列的前項(xiàng)和.
(1) 若{}是遞增數(shù)列,且成等差數(shù)列,求的值;
(2) 若,且{}是遞增數(shù)列,{}是遞減數(shù)列,求數(shù)列{}的通項(xiàng)公式;
(3) 若,對(duì)于給定的正整數(shù),是否存在一個(gè)滿足條件的數(shù)列,使得,如果存在,給出一個(gè)滿足條件的數(shù)列,如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險(xiǎn)公司利用簡(jiǎn)單隨機(jī)抽樣方法,對(duì)投保車輛進(jìn)行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計(jì)如下:
賠付金額(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
車輛數(shù)(輛) | 500 | 130 | 100 | 150 | 120 |
(1)若每輛車的投保金額均為2800元,估計(jì)賠付金額大于投保金額的概率.
(2)在樣本車輛中,車主是新司機(jī)的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機(jī)的占20%,估計(jì)在已投保車輛中,新司機(jī)獲賠金額為4000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面四邊形ABCD中, AB=2,BD=,AB⊥BC,∠BCD=2∠ABD,△ABD的面積為2.
(1)求AD的長(zhǎng);
(2)求△CBD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,為常數(shù))在內(nèi)有兩極值點(diǎn)
(1)求實(shí)數(shù)a的取值范圍;
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:
函數(shù)的最大值為1;
“,”的否定是“”;
若為銳角三角形,則有;
“”是“函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的充分必要條件.
其中錯(cuò)誤的個(gè)數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了改善空氣質(zhì)量,某市規(guī)定,從2018年1月1日起,對(duì)二氧化碳排放量超過的輕型汽車進(jìn)行懲罰性征稅.檢測(cè)單位對(duì)甲乙兩品牌輕型汽車各抽取5輛進(jìn)行二氧化碳排放量檢測(cè),記錄如下:(單位:)
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | 100 | 160 |
經(jīng)測(cè)算得乙品牌輕型汽車二氧化碳排放量的平均值為.
(1)求表中的值,并比較甲乙兩品牌輕型汽車二氧化碳排放量的穩(wěn)定性;
(2)從被檢測(cè)的5輛甲品牌汽車中隨機(jī)抽取2輛,求至少有1輛二氧化碳排放量超過的概率.(注:方差,其中為的平均數(shù)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com