20.在銳角△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,若2asinB=$\sqrt{3}$b.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求△ABC的周長.

分析 (Ⅰ)由正弦定理化簡已知可得$\sqrt{3}$sinB=2sinAsinB,結(jié)合sinB≠0,可求sinA=$\frac{\sqrt{3}}{2}$,結(jié)合A為銳角,可求A的值.
(Ⅱ)由已知利用三角形面積公式可求bc=6,進而利用余弦定理可求b+c=5,即可得解△ABC的周長.

解答 解:(Ⅰ)∵解:在△ABC中,若$\sqrt{3}$b=2asinB,可得$\sqrt{3}$sinB=2sinAsinB,
∴由sinB≠0,可得sinA=$\frac{\sqrt{3}}{2}$,
∵A為銳角,
∴A=60°.
(Ⅱ)∵A=60°.a(chǎn)=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc,
∴bc=6,
∴由余弦定理可得:7=b2+c2-bc=(b+c)2-3bc=(b+c)2-18,
∴解得:b+c=5,
∴△ABC的周長l=a+b+c=$\sqrt{7}$+5.

點評 本題主要考查了正弦定理,三角形面積公式,余弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.電商中“貓狗大戰(zhàn)”在節(jié)日期間的競爭異常激烈,在剛過去的618全民年中購物節(jié)中,某東當(dāng)日交易額達1195億元,現(xiàn)從該電商“剁手黨”中隨機抽取100名顧客進行回訪,按顧客的年齡分成了6組,得到如下所示的頻率直方圖.
(1)求顧客年齡的眾數(shù),中位數(shù),平均數(shù)(每一組數(shù)據(jù)用中點做代表);
(2)用樣本數(shù)據(jù)的頻率估計總體分布中的概率,則從全部顧客中任取3人,記隨機變量X為顧客中年齡小于25歲的人數(shù),求隨機變量X的分布列以及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知等差數(shù)列{an}滿足a3=3,前6項和為21.
(1)求數(shù)列{an}的通項公式;
(2)若bn=3${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.為了得到函數(shù)y=2sin($\frac{x}{3}$+$\frac{π}{6}$),x∈R的圖象,只需要把函數(shù)y=2sinx,x∈R的圖象上所有的點( 。
A.向左平移$\frac{π}{6}$個單位,再把所得各點的橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍(縱坐標(biāo)不變)
B.向右平移$\frac{π}{6}$個單位,再把所得各點的橫坐標(biāo)縮短為原來的$\frac{1}{3}$倍(縱坐標(biāo)不變)
C.向左平移$\frac{π}{6}$個單位,再把所得各點的橫坐標(biāo)縮短為原來的3倍(縱坐標(biāo)不變)
D.向右平移$\frac{π}{6}$個單位,再把所得各點的橫坐標(biāo)縮短為原來的3倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,a,b,c分別是三個內(nèi)角A,B,C的對邊,b=1,c=$\sqrt{3}$,∠B=30°,則a的值為( 。
A.1或2B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)設(shè)f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈[0,1)}\\{2-x,x∈[1,2]}\end{array}\right.$,求${∫}_{0}^{2}$f(x)dx的值;
(2)若復(fù)數(shù)z1=a+2i(a∈R),z2=3-4i,且$\frac{{z}_{1}}{{z}_{2}}$為純虛數(shù),求|z1|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a,b,c∈(0,+∞) 且 a≥b≥c,a+b+c=12,ab+bc+ca=45,則a的最小值為( 。
A.5B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知復(fù)數(shù)z滿足z+$\frac{3}{z}$=0,則|z|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知a∈R,函數(shù)f(x)=2ln(x-2)-a(x-2)2
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個相異零點x1,x2,求證x1x2+4>2(x1+x2)+e(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

同步練習(xí)冊答案