【題目】已知橢圓C:1(ab0)的左、右焦點(diǎn)分別為F1,F2,點(diǎn)P為橢圓C上不與左右頂點(diǎn)重合的動(dòng)點(diǎn),設(shè)I,G分別為△PF1F2的內(nèi)心和重心.當(dāng)直線IG的傾斜角不隨著點(diǎn)P的運(yùn)動(dòng)而變化時(shí),橢圓C的離心率為_____.
【答案】
【解析】
首先找到特殊位置,即取P在上頂點(diǎn)時(shí),內(nèi)心和重心都在y軸上,由于內(nèi)心和重心連線的斜率不隨著點(diǎn)P的運(yùn)動(dòng)而變化,可得:GI始終垂直于x軸,可得內(nèi)切圓半徑為y0,再利用等面積法列式解方程可得:.
當(dāng)直線IG的傾斜角不隨著點(diǎn)P的運(yùn)動(dòng)而變化時(shí),取P特殊情況在上頂點(diǎn)時(shí),
內(nèi)切圓的圓心在y軸上,重心也在y軸上,
由此可得不論P在何處,GI始終垂直于x軸,
設(shè)內(nèi)切圓與邊的切點(diǎn)分別為Q,N,A,如圖所示:
設(shè)P在第一象限,坐標(biāo)為:(x0,y0)連接PO,則重心G在PO上,
連接PI并延長(zhǎng)交x軸于M點(diǎn),連接GI并延長(zhǎng)交x軸于N,
則GN⊥x軸,作PE垂直于x軸交于E,
可得重心G(,)所以I的橫坐標(biāo)也為,|ON|,
由內(nèi)切圓的性質(zhì)可得,PG=PA,F1Q=F1N,NF2=AF2,
所以PF1﹣PF2=(PG+QF1)﹣(PA+AF2)=F1N﹣NF2
=(F1O+ON)﹣(OF2﹣ON)=2ON,
而PF1+PF2=2a,所以PF1=a,PF2=a,
由角平分線的性質(zhì)可得,所以可得OM,
所以可得MN=ON﹣OM,
所以ME=OE﹣OM=x0,
所以,即INPEy0,
(PF1+F1F2+PF2)IN,即(2a+2c),
所以整理為:,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在邊長(zhǎng)為2的等邊中,分別為邊的中點(diǎn),將AED沿折起,使得 , ,得到如圖2的四棱錐A-BCDE,連結(jié),且與交于點(diǎn).
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
得到正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”
B. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”
C. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”
D. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代勞動(dòng)人民在筑城、筑堤、挖溝、挖渠、建倉(cāng)、建囤等工程中,積累了豐富的經(jīng)驗(yàn),總結(jié)出了一套有關(guān)體積、容積計(jì)算的方法,這些方法以實(shí)際問(wèn)題的形式被收入我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中.《九章算術(shù)》將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,如圖所示的陽(yáng)馬三視圖,則它的體積為( )
A.B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(x+1)2,令f1(x)=f'(x),fn+1(x)=fn'(x),若fn(x)=ex(anx2+bnx+cn),記數(shù)列{}的前n項(xiàng)和為Sn,則下列選項(xiàng)中與S2019的值最接近的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】冠狀病毒是一個(gè)大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴(yán)重急性呼吸綜合征()等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒()是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見(jiàn)體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.
某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有n()份血液樣本,有以下兩種檢驗(yàn)方式:
方式一:逐份檢驗(yàn),則需要檢驗(yàn)n次.
方式二:混合檢驗(yàn),將其中k(且)份血液樣本分別取樣混合在一起檢驗(yàn).
若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪幾份為陽(yáng)性,就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為.
假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為p().現(xiàn)取其中k(且)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.
(1)若,試求p關(guān)于k的函數(shù)關(guān)系式;
(2)若p與干擾素計(jì)量相關(guān),其中()是不同的正實(shí)數(shù),
滿足且()都有成立.
(i)求證:數(shù)列等比數(shù)列;
(ii)當(dāng)時(shí),采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)的期望值更少,求k的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在新高考改革中,打破了文理分科的“”模式,不少省份采用了“”,“”,“”等模式.其中“”模式的操作又更受歡迎,即語(yǔ)數(shù)外三門(mén)為必考科目,然后在物理和歷史中選考一門(mén),最后從剩余的四門(mén)中選考兩門(mén).某校為了了解學(xué)生的選科情況,從高二年級(jí)的2000名學(xué)生(其中男生1100人,女生900人)中,采用分層抽樣的方法從中抽取n名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的n名學(xué)生中含男生110人,求n的值及抽取到的女生人數(shù);
(2)在(1)的情況下對(duì)抽取到的n名同學(xué)“選物理”和“選歷史”進(jìn)行問(wèn)卷調(diào)查,得到下列2×2列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為選科目與性別有關(guān)?
選物理 | 選歷史 | 合計(jì) | |
男生 | 90 | ||
女生 | 30 | ||
合計(jì) |
(3)在(2)的條件下,從抽取的“選歷史”的學(xué)生中按性別分層抽樣再抽取5名,再?gòu)倪@5名學(xué)生中抽取2人了解選政治、地理、化學(xué)、生物的情況,求2人至少有1名男生的概率.
參考公式:.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F分別是AC,PB的中點(diǎn).
(1)證明:EF∥平面PCD;
(2)求證:面PBD⊥面PAC;
(3)若PA=AB,求PD與平面PAC所成角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com