分析 根據(jù)條件,根據(jù)四面體P-ABC構(gòu)造長(zhǎng)方體,然后根據(jù)長(zhǎng)方體和球的直徑之間的關(guān)系,即可求出球的半徑.
解答 解:∵PB⊥平面ABC,AB⊥AC,且AC=1,AB=1,PB=AC=2,
∴構(gòu)造長(zhǎng)方體,則長(zhǎng)方體的外接球和四面體的外接球是相同的,
則長(zhǎng)方體的體對(duì)角線等于球的直徑2R,
則2R=$\sqrt{{1}^{2}+{2}^{2}+{2}^{2}}$=3,
∴R=$\frac{3}{2}$,
則球O的表面積為4πR2=4$π×(\frac{3}{2})^{2}$=9π,
故答案為:9π.
點(diǎn)評(píng) 本題主要考查空間幾何體的位置關(guān)系,利用四面體構(gòu)造長(zhǎng)方體是解決本題的關(guān)鍵,利用長(zhǎng)方體的體對(duì)角線等于球的直徑是本題的突破點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±1 | B. | ±$\frac{\sqrt{3}}{2}$ | C. | ±$\frac{\sqrt{2}}{2}$ | D. | ±$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20πcm3 | B. | 16πcm3 | C. | 12πcm3 | D. | $\frac{20π}{3}c{m^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{16}π$ | B. | $\frac{25}{16}π$ | C. | $\frac{49}{16}π$ | D. | $\frac{81}{16}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}π$ | B. | $\frac{27}{2}π$ | C. | 12π | D. | $\frac{8\sqrt{2}}{3}π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16π | B. | 8π | C. | 4π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{6}π$ | B. | 6π | C. | $\frac{20π}{3}$ | D. | 16π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com