15.已知n∈N+,則$\frac{1}{2!}+\frac{2}{3!}+…+\frac{n}{(n+1)!}$=1-$\frac{1}{(n+1)!}$.

分析 由$\frac{n}{(n+1)!}=\frac{1}{n!}-\frac{1}{(n+1)!}$,直接采用裂項(xiàng)相消法求得答案.

解答 解:∵$\frac{n}{(n+1)!}=\frac{1}{n!}-\frac{1}{(n+1)!}$,
∴$\frac{1}{2!}+\frac{2}{3!}+…+\frac{n}{(n+1)!}$=$(\frac{1}{1!}-\frac{1}{2!})+(\frac{1}{2!}-\frac{1}{3!})+…+(\frac{1}{n!}-\frac{1}{(n+1)!})$=1-$\frac{1}{(n+1)!}$.
故答案為:1-$\frac{1}{(n+1)!}$.

點(diǎn)評 本題考查裂項(xiàng)相消法求數(shù)列的前n項(xiàng)和,正確裂項(xiàng)是關(guān)鍵,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.要得到函數(shù)$y=3sin(x+\frac{π}{2})$的圖象,只需將函數(shù)y=3sin(2x-$\frac{π}{6}$)的圖象上所有點(diǎn)的( 。
A.橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變),所得圖象再向左平移$\frac{2π}{3}$個(gè)單位長度.
B.橫坐標(biāo)縮短到原來的$\frac{1}{2}$(縱坐標(biāo)不變),所得圖象再向右平移$\frac{π}{6}$個(gè)單位長度.
C.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象再向左平移$\frac{2π}{3}$個(gè)單位長度.
D.橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),所得圖象再向右平移$\frac{π}{6}$個(gè)單位長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在(0,2π)內(nèi)使sin x>|cos x|的x的取值范圍是( 。
A.($\frac{π}{4}$,$\frac{3π}{4}$)B.($\frac{π}{4}$,$\frac{π}{2}$]∪($\frac{5π}{4}$,$\frac{3π}{2}$]C.($\frac{π}{4}$,$\frac{π}{2}$)D.($\frac{5π}{4}$,$\frac{7π}{4}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.橢圓$C:\;\;\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的右焦點(diǎn)為F(1,0),離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)過F且斜率為1的直線交橢圓于M,N兩點(diǎn),P是直線x=4上任意一點(diǎn).求證:直線PM,PF,PN的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)p:實(shí)數(shù)x滿足x2-4ax+3a2<0(a>0);命題q:實(shí)數(shù)x滿足$\left\{\begin{array}{l}{x^2}-x-6≤0\\{x^2}+2x-8>0\end{array}\right.$
(1)若a=1,且“p且q”為真,求實(shí)數(shù)x的取值范圍
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若向量$\overrightarrow{a}$(-1,1),$\overrightarrow$(3,-2),則|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.$\sqrt{6}$B.5C.$\sqrt{5}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知s$in2α=\frac{24}{25}$,且$π<α<\frac{5π}{4}$,則cosα-sinα=-$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是一個(gè)四面體的三視圖,圖中三個(gè)三角形均為直角三角形,且面積之和為8,則其外接球的表面積的最小值為( 。
A.16πB.C.$\frac{32π}{3}$D.$\frac{16π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=cos(2x-$\frac{π}{3}$)+2sin(x-$\frac{π}{4}$)sin(x+$\frac{π}{4}$).
(Ⅰ)求函數(shù)f(x)的最小正周期和圖象的對稱軸方程;
(Ⅱ)討論函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上單調(diào)性并求出值域.

查看答案和解析>>

同步練習(xí)冊答案