18.?dāng)?shù)據(jù)x1,x2,…,x8平均數(shù)為6,標(biāo)準(zhǔn)差為2,則數(shù)據(jù)2x1-6,2x2-6,…,2x8-6的方差為(  )
A.16B.4C.8D.10

分析 根據(jù)平均數(shù)與方差、標(biāo)準(zhǔn)差的關(guān)系,求出對(duì)應(yīng)的數(shù)值.

解答 解:數(shù)據(jù)x1,x2,…,x8平均數(shù)為6,標(biāo)準(zhǔn)差為2,
則數(shù)據(jù)2x1-6,2x2-6,…,2x8-6的平均數(shù)為2×6-6=6,
方差為22×22=16.
故選:A.

點(diǎn)評(píng) 本題考查了平均數(shù)與方差、標(biāo)準(zhǔn)差的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知sinx=$\frac{\sqrt{2}}{2}$,當(dāng)x∈[0,2π]時(shí),求角x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若a>b>c,a+b+c=0,則下列不等式一定成立的是( 。
A.a-b>b-cB.ab>acC.ab>bcD.a2>c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,S9=81
(Ⅰ)求{an}的通項(xiàng)公式
(Ⅱ)求$\frac{1}{{S}_{1}+1}$$+\frac{1}{{S}_{2}+2}$+…$+\frac{1}{{S}_{2017}+2017}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)m∈R,過定點(diǎn)A的動(dòng)直線mx+y-1=0與過定點(diǎn)B的動(dòng)直線x-my+m+2=0交于點(diǎn)P(x,y),則|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|的取值范圍為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知x∈R,用反證法證明:$\sqrt{3}$+$\sqrt{5}$>$\sqrt{2}$+$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=x+$\frac{1}{x-1}$(x>1),則( 。
A.f(x)的最大值為2B.f(x)的最大值為3C.f(x)的最小值為2D.f(x)的最小值為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)有下面四個(gè)命題
p1:若復(fù)數(shù)z滿足$\frac{1}{z}$∈R,則z∈R;
p2:若復(fù)數(shù)z滿足z2∈R,則z∈R;
p3:若復(fù)數(shù)z1,z2滿足z1z2∈R,則z1=$\overline{z_2}$;
p4:若復(fù)數(shù)z∈R,則$\overline{z}$∈R.
其中的真命題為( 。
A.p2,p3B.p2,p4C.p1,p3D.p1,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.?dāng)?shù)列1,4,9,16,25…的一個(gè)通項(xiàng)公式為an=n2

查看答案和解析>>

同步練習(xí)冊(cè)答案