已知|
a
|=6,|
b
|=4,
a
b
的夾角為120°,則(
a
+2
b
)•(
a
-3
b
)的值是( 。
A、-81B、144
C、-48D、-72
考點:平面向量數(shù)量積的運算
專題:平面向量及應用
分析:直接利用向量的數(shù)量積化簡求值即可.
解答: 解:|
a
|=6,|
b
|=4,
a
b
的夾角為120°,
則(
a
+2
b
)•(
a
-3
b
)=
a
2
-6
b
2
-
a
b
=36-6×16-6×4×(-
1
2
)
=-48.
故選:C.
點評:本題考查平面向量的數(shù)量積應用,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

f(x)=
2x+a,x>2
x+3a,x≤2
的值域為R,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求實數(shù)a的值計算:0.064 -
1
3
-(-
1
8
0+16 
3
4
+0.25 
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a=log 
1
2
3,b=(
1
2
3,c=3 
1
2
,則a,b,c從小到大的順序是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

cos(-
43
6
π)的值是( 。
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與橢圓
x2
16
+
y2
25
=1共焦點且兩漸近線的夾角為60°的雙曲線方程為( 。
A、
y2
9
4
-
x2
27
4
=1
B、
x2
9
4
-
y2
27
4
=1
C、
x2
27
4
-
y2
9
4
=1
D、
y2
9
4
-
x2
27
4
=1或
y2
27
4
-
y2
9
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sin(
2
+α)=
2
5
,則cosα的值為( 。
A、
2
5
B、-
2
5
C、±
21
5
D、±
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x-1
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:x=-2,圓C:x2+y2=4,動圓P恒與l相切,動圓P與圓C相交于A、B兩點,且AB恒為圓C的直徑,動圓P圓心的軌跡構成曲線E.
(1)求曲線E的軌跡方程;
(2)已知Q(-1,0)、F(1,0),過Q的直線m與曲線E交于M,N兩點,設直線FM,F(xiàn)N的傾斜角分別為θ1,θ2,問θ12是否為定值?

查看答案和解析>>

同步練習冊答案